Contents

group theory

# Contents

## Definition

The special orthogonal group or rotation group, denoted $SO(n)$, is the group of rotations in a Cartesian space of dimension $n$.

This is one of the classical Lie groups. It is the connected component of the neutral element in the orthogonal group $O(n)$.

For instance for $n=2$ we have $SO(2)$ the circle group.

It is the first step in the Whitehead tower of $O(n)$

$\cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,,$

the next step of which is the spin group.

In physics the rotation group is related to angular momentum.

## Properties

### Homology and cohomology

ordinary cohomology of the classifying spaces $B O(n)$ and $B SO(n)$:

### As part of the ADE pattern

Dynkin diagram/
Dynkin quiver
Platonic solidfinite subgroups of SO(3)finite subgroups of SU(2)simple Lie group
$A_{n \geq 1}$cyclic group
$\mathbb{Z}_{n+1}$
cyclic group
$\mathbb{Z}_{n+1}$
special unitary group
$SU(n+1)$
D4Klein four-group
$D_4 \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$
quaternion group
$2 D_4 \simeq$ Q8
SO(8)
$D_{n \geq 4}$dihedron,
hosohedron
dihedral group
$D_{2(n-2)}$
binary dihedral group
$2 D_{2(n-2)}$
special orthogonal group
$SO(2n)$
$E_6$tetrahedrontetrahedral group
$T$
binary tetrahedral group
$2T$
E6
$E_7$cube,
octahedron
octahedral group
$O$
binary octahedral group
$2O$
E7
$E_8$dodecahedron,
icosahedron
icosahedral group
$I$
binary icosahedral group
$2I$
E8

### Relation to orientation of manifolds

For $X$ an $n$-dimensional manifold a lift of the classifying map $X \to \mathcal{B}O(n)$ of the $O(n)$-principal bundle to which the tangent bundle $T X$ is associated is the same as a choice of orientation of $X$.

## Examples

sp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
SO(3)Spin(3)
SO(4)Spin(4)
SO(5)Spin(5)Pin(5)
Spin(6)
Spin(7)
SO(8)Spin(8)SO(8)
SO(9)Spin(9)
$\vdots$$\vdots$
SO(16)Spin(16)SemiSpin(16)
SO(32)Spin(32)SemiSpin(32)

see also

$\cdots \to$ Fivebrane group $\to$ string group $\to$ spin group $\to$ special orthogonal group $\to$ orthogonal group.

groupsymboluniversal coversymbolhigher coversymbol
orthogonal group$\mathrm{O}(n)$Pin group$Pin(n)$Tring group$Tring(n)$
special orthogonal group$SO(n)$Spin group$Spin(n)$String group$String(n)$
Lorentz group$\mathrm{O}(n,1)$$\,$$Spin(n,1)$$\,$$\,$
anti de Sitter group$\mathrm{O}(n,2)$$\,$$Spin(n,2)$$\,$$\,$
conformal group$\mathrm{O}(n+1,t+1)$$\,$
Narain group$O(n,n)$
Poincaré group$ISO(n,1)$Poincaré spin group$\widehat {ISO}(n,1)$$\,$$\,$
super Poincaré group$sISO(n,1)$$\,$$\,$$\,$$\,$
superconformal group

For general references see also at orthogonal group.

• Edgar H. Brown, The Cohomology of $B SO_n$ and $BO_n$ with Integer Coefficients, Proceedings of the American Mathematical Society Vol. 85, No. 2 (Jun., 1982), pp. 283-288 (jstor:2044298)

• Mark Feshbach, The Integral Cohomology Rings of the Classifying Spaces of $\mathrm{O}(n)$ and $\mathrm{SO}(n)$, Indiana Univ. Math. J. 32 (1983), 511-516 (doi:10.1512/iumj.1983.32.32036)

• Harsh Pittie, The integral homology and cohomology rings of SO(n) and Spin(n), Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105–153 (doi:10.1016/0022-4049(91)90108-E)

• Gerd Rudolph, Matthias Schmidt, around Theorem 4.2.23 of Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields, Theoretical and Mathematical Physics series, Springer 2017 (doi:10.1007/978-94-024-0959-8)

See also

• Jim Stasheff, The topology and algebra of $SO(n-1) \to SO(n) \to S^{n-1}$, Herman’s seminar July 2013 (pdf slides)