A cyclic set is a presheaf on the cyclic category (which is often called Connes' cyclic category though it is cocyclic, with the usual contravariant confusion), which is intermediate between a symmetric set and a simplicial set. With Set replaced by a general category one speaks of a cyclic object.
The concept of cyclic sets/objects is used in the description of the cyclic structure on Hochschild homology/Hochschild cohomology and hence for the discussion on cyclic homology/cyclic cohomology.
Cyclic sets and more generally cyclic objects can be described in terms of standard generators:
A -cyclic object (synonym: paracyclic object)in a category is a simplicial object in together with a sequence of isomorphisms , , such that
where are boundaries, are degeneracies. A -cocyclic (paracocyclic) object in is a -cyclic object in . -(co)cyclic object is (co)cyclic if, in addition,
The category of cyclic sets, being a presheaf category is a topos, and hence is the classifying topos for some geometric theory. This turns out to be the theory of abstract circles (Moerdijk 96). A further analysis can be found in (Caramello Wentzlaff 14). Accordingly there is an infinity-action of the circle group on the geometric realization of a cyclic set (see also Drinfeld 03).
There is a model category-structure on the category of cyclic sets, which makes it a presentation for -equivariant homotopy theory (Spalinski 95, Blumberg 04).
The original definition:
Alain Connes, Cohomologie cyclique et foncteurs , C.R.A.S. 296 (1983), Série I, 953-958 MR777584 Zbl0534.18009 (pdf, pdf).
Pierre Cartier, Section 1.6 of: Homologie cyclique : rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen…, Séminaire Bourbaki: volume 1983/84, exposés 615-632, Astérisque, no. 121-122 (1985), Exposé no. 621 (numdam:SB_1983-1984__26__123_0)
Textbook account (in the generality of cyclic spaces):
Jean-Louis Loday, Cyclic Spaces and -Equivariant Homology (doi:10.1007/978-3-662-21739-9_7)
Chapter 7 in: Cyclic Homology, Grundlehren 301, Springer 1992 (doi:10.1007/978-3-662-21739-9)
Jean-Louis Loday, Section 3 of: Free loop space and homology, Chapter 4 in: Janko Latchev, Alexandru Oancea (eds.): Free Loop Spaces in Geometry and Topology, IRMA Lectures in Mathematics and Theoretical Physics 24, EMS 2015 (arXiv:1110.0405, ISBN:978-3-03719-153-8)
Exposition:
Discussion of the relation to simplicial sets:
Alain Connes, Caterina Consani, Cyclic structures and the topos of simplicial sets, 1309.0394
Julia E. Bergner, Walker H. Stern, Cyclic Segal Spaces, arXiv:2409.11945 (2024). (abstract)
The identification of the category of cyclic sets as the classifying topos for abstract circles is due to
Ieke Moerdijk, Cyclic sets as a classifying topos, 1996 (pdf)
Olivia Caramello, Nicholas Wentzlaff, Cyclic theories, 2014 (arXiv:1406.5479)
The resulting circle-action on the (geometric realization of) cyclic sets is also discussed in
The homotopy theory of cyclic sets and its relation to -equivariant homotopy theory is discussed in
J. Spalinski, Strong homotopy theory of cyclic sets, J. of Pure and Appl. Alg. 99 (1995), 35–52.
Andrew Blumberg, A discrete model of -homotopy theory (arXiv:math/0411183)
An old query is archived in Forum here.
There are fairly recent slides by Spalinski on the subject here, which also discuss relationships with dihedral sets? and quaternionic sets, as studied by Loday.
Last revised on September 26, 2024 at 11:24:52. See the history of this page for a list of all contributions to it.