#
nLab

dg-model category

### Context

#### Model category theory

**model category**

## Definitions

## Morphisms

## Universal constructions

## Refinements

## Producing new model structures

## Presentation of $(\infty,1)$-categories

## Model structures

### for $\infty$-groupoids

for ∞-groupoids

### for $n$-groupoids

### for $\infty$-groups

### for $\infty$-algebras

#### general

#### specific

### for stable/spectrum objects

### for $(\infty,1)$-categories

### for stable $(\infty,1)$-categories

### for $(\infty,1)$-operads

### for $(n,r)$-categories

### for $(\infty,1)$-sheaves / $\infty$-stacks

#### Enriched category theory

## Idea

A *dg-model category is the analogue of a simplicial model category in the dg-setting. Any dg-model category presents an associated dg-category, as described at dg-category presented by a dg-model category.*

## Definition

A **dg-model structure** is a $dgmod_k$-enriched model structure, where $dgmod_k$ denotes the category of dg-modules over the base commutative ring $k$.

Last revised on January 6, 2015 at 22:41:58.
See the history of this page for a list of all contributions to it.