nLab first Chern class

Redirected from "first Chern classes".
Contents

Context

Algebraic topology

Cohomology

cohomology

Special and general types

Special notions

Variants

Extra structure

Operations

Theorems

Contents

Idea

The first of the Chern classes. The unique characteristic class of circle bundles / complex line bundles.

Definition

In bare homotopy-type theory

As a universal characteristic class, the first Chern class is the weak homotopy equivalence

c 1:BU(1)K(,2). c_1 : B U(1) \stackrel{\simeq}{\to} K(\mathbb{Z},2) \,.

In complex analytic geometry

In complex analytic geometry consider the exponential exact sequence

𝔾𝔾 ×. \mathbb{Z}\to \mathbb{G}\to \mathbb{G}^\times \,.

For any complex analytic space XX this induces the long exact sequence in cohomology with connecting homomorphism

c 1:H 1(X,𝔾 ×)H 2(X,). c_1\;\colon\;H^1(X,\mathbb{G}^\times ) \longrightarrow H^2(X,\mathbb{Z}) \,.

This is the first Chern-class map. It sends a holomorphic line bundle (H 1(X,𝔾 ×)H^1(X,\mathbb{G}^\times) is the Picard group of XX) to an integral cohomology class.

If DD is a divisor in XX, then c 1(𝒪 X(D))c_1(\mathcal{O}_X(D)) is the Poincaré dual of the fundamental class of DD (e.g. Huybrechts 04, prop. 4.4.13).

Over a Riemann surface Σ\Sigma the evaluation of the Chern class c 1(L)c_1(L) of a holomorphic line bundle LL on a fundamental class is the degree of LL:

deg(L)=c 1(L),XH 2(Σ,). deg(L) = \langle c_1(L), X\rangle \in H^2(\Sigma, \mathbb{Z}) \simeq \mathbb{Z} \,.

References

See the references at Chern class and characteristic class.

In complex geometry:

  • Daniel Huybrechts, Complex geometry - an introduction. Springer (2004). Universitext. 309 pages. (pdf)

In solid state physics (Chern-class of Berry connections, such as for characterizing topological phases of matter):

  • Takahiro Fukui, Yasuhiro Hatsugai, Hiroshi Suzuki, Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances, J. Phys. Soc. Jpn. 74 (2005) 1674-1677 [arXiv:cond-mat/0503172, doi:10.1143/JPSJ.74.1674]

Last revised on May 31, 2024 at 06:43:07. See the history of this page for a list of all contributions to it.