nLab hadrons as KK-modes of 5d Yang-Mills theory -- references

Hadrons as KK-modes of 5d Yang-Mills theory

Hadrons as KK-modes of 5d Yang-Mills theory

The suggestion that the tower of observed vector mesons – when regarded as gauge fields of hidden local symmetries of chiral perturbation theory – is reasonably modeled as a Kaluza-Klein tower of D=5 Yang-Mills theory:

That the pure pion-Skyrmion-model of baryons is approximately the KK-reduction of instantons in D=5 Yang-Mills theory is already due to:

with a hyperbolic space-variant in:

Further discussion of this approximation:

The observation that the result of Atiyah-Manton 89 becomes an exact Kaluza-Klein construction of Skyrmions/baryons from D=5 instantons when the full KK-tower of vector mesons as in Son-Stephanov 03 is included into the Skyrmion model (see also there) is due to:

In the Sakai-Sugimoto model of holographic QCD the D=5 Yang-Mills theory of this hadron Kaluza-Klein theory is identified with the worldvolume-theory of D8-flavour branes intersected with D4-branes in an intersecting D-brane model:

Extensive review of this holographic/KK-theoretic-realization of quantum hadrodynamics from D=5 Yang-Mills theory is in:

Via the realization of D4/D8 brane bound states as instantons in the D8-brane worldvolume-theory (see there and there), this relates also to the model of baryons as wrapped D4-branes, originally due to

and further developed in the nuclear matrix model:

In relation to Yang-Mills monopoles:

Discussion, in this context, of D-term effects affecting hadron stability:

More on baryons in the Sakai-Sugimoto model of holographic QCD:

More on mesons in holographic QCD:

An alternative scenario of derivation of 4d Skyrmions by KK-compactification of D=5 Yang-Mills theory, now on a closed interval, motivated by M5-branes instead of by D4/D8-brane intersections as in the Sakai-Sugimoto model, is discussed in:

following

See also:

  • Y. H. Ahn, Sin Kyu Kang, Hyun Min Lee, Towards a Model of Quarks and Leptons (arXiv:2112.13392)

Last revised on December 27, 2023 at 11:26:42. See the history of this page for a list of all contributions to it.