Yang-Mills theory on spacetimes of dimension .
For U(1)-gauge group this reduces to D=5 Maxwell theory. Under KK-compactification this becomes massive Yang-Mills theory in 4 dimensions. Under supersymmetrization it becomes D=5 super Yang-Mills theory.
On Skyrmions in 4d as holographic/KK-theoretic reduction of instantons in D=5 Yang-Mills theory:
Skyrmions in 4 dimensional spacetime, with vector meson-contributiuons included, are the holographic/KK-theory reduction of instantons in D=5 Yang-Mills theory (Sakai-Sugimoto 04, Section 5.2, Sakai-Sugimoto 05, Section 3.3, reviewed in Sugimoto 16, Section 15.3.4, Bartolini 17, Section 2.
This phenomenon is essentially the theorem of Atiyah-Manton 89, this is highlighted and developed in Sutcliffe 10, Sutcliffe 15.
In this way Skyrmions (and hence baryons and atomic nuclei, see below) appear in the Witten-Sakai-Sugimoto model, which realizes (something close to) non-perturbative QCD as a D4/D8-intersecting D-brane model described by the AdS-QCD correspondence (“holographic QCD”).
This already produces baryon mass spectra with moderate quantitative agreement with experiment (HSSY 07):
graphics from Sugimoto 16
This way, via the equivalence between D4-D8-brane intersections with instantons in the D8-brane-worldvolume, the Skyrme model becomes equivalent to a model of baryons by wrapped D4-branes (Sugimoto 16, 15.4.1):
graphics grabbed from Sugimoto 16
(…)
The suggestion that the tower of observed vector mesons, when regarded as gauge fields of hidden local symmetries of chiral perturbation theory, is reasonably modeled as a Kaluza-Klein tower of D=5 Yang-Mills theory:
That the pure pion-Skyrmion-model of baryons is approximately the KK-reduction of instantons in D=5 Yang-Mills theory is already due to
with a hyperbolic space-variant in
The observation that the result of Atiyah-Manton 89 becomes an exact Kaluza-Klein construction of Skyrmions/baryons from D=5 instantons when the full KK-tower of vector mesons as in Son-Stephanov 03 is included into the Skyrmion model (see also there) is due to
Paul Sutcliffe, Skyrmions, instantons and holography, JHEP 1008:019, 2010 (arXiv:1003.0023)
Paul Sutcliffe, Holographic Skyrmions, Mod. Phys. Lett. B29 (2015) no. 16, 1540051 (spire:1383608, doi:10.1142/S0217984915400515)
In the Sakai-Sugimoto model of holographic QCD the D=5 Yang-Mills theory of this hadron Kaluza-Klein theory is identified with the worldvolume-theory of D8-flavour branes intersected with D4-branes in an intersecting D-brane model:
Tadakatsu Sakai, Shigeki Sugimoto, section 5.2 of Low energy hadron physics in holographic QCD, Prog.Theor.Phys.113:843-882, 2005 (arXiv:hep-th/0412141)
Tadakatsu Sakai, Shigeki Sugimoto, section 3.3. of More on a holographic dual of QCD, Prog.Theor.Phys.114:1083-1118, 2005 (arXiv:hep-th/0507073)
Hiroyuki Hata, Tadakatsu Sakai, Shigeki Sugimoto, Shinichiro Yamato, Baryons from instantons in holographic QCD, Prog.Theor.Phys.117:1157, 2007 (arXiv:hep-th/0701280)
Stefano Bolognesi, Paul Sutcliffe, The Sakai-Sugimoto soliton, JHEP 1401:078, 2014 (arXiv:1309.1396)
Lorenzo Bartolini, Stefano Bolognesi, Andrea Proto, From the Sakai-Sugimoto Model to the Generalized Skyrme Model, Phys. Rev. D 97, 014024 2018 (arXiv:1711.03873)
Extensive review of this holographic/KK-theoretic-realization of quantum hadrodynamics from D=5 Yang-Mills theory is in:
Mannque Rho, Ismail Zahed (eds.) The Multifaceted Skyrmion, World Scientific, Second edition, 2016 (doi:10.1142/9710)
Via the realization of D4/D8 brane bound states as instantons in the D8-brane worldvolume-theory (see there and there), this relates also to the model of baryons as wrapped D4-branes, originally due to
Edward Witten, Baryons And Branes In Anti de Sitter Space, JHEP 9807:006, 1998 (arXiv:hep-th/9805112)
David Gross, Hirosi Ooguri, Aspects of Large Gauge Theory Dynamics as Seen by String Theory, Phys. Rev. D58:106002, 1998 (arXiv:hep-th/9805129)
An alternative scenario of derivation of 4d Skyrmions by KK-compactification of D=5 Yang-Mills theory, now on a closed interval, motivated by M5-branes instead of by D4/D8-brane intersections as in the Sakai-Sugimoto model, is discussed in:
following
Last revised on May 18, 2020 at 17:42:17. See the history of this page for a list of all contributions to it.