Given any object$X$ in any category$C$, the subobjects of $X$ form a poset, called (naturally enough) the poset of subobjects of $X$, or the subobject poset of $X$.

Sometimes it is the poset of regular subobjects that really matters (although these are the same in any (pre)topos).

Properties

If $C$ is finitely complete, then the subobjects form a meet-semilattice, so we may speak of the semilattice of subobjects.

In any coherent category (such as a pretopos), the subobjects form a distributive lattice, so we may speak of the lattice of subobjects.