nLab pair of composable morphisms

Redirected from "unique composite".

Context

(,1)(\infty,1)-Category theory

Internal (,1)(\infty,1)-Categories

Directed homotopy type theory

Contents

 Idea

The notion of composition of morphisms in simplicial type theory.

Definition

Using morphisms

Let AA be a type in simplicial type theory. Recall that the hom-type is defined as

hom A(x,y) f:𝕀A(f(0)=x)×(f(1)=y)\mathrm{hom}_A(x, y) \coloneqq \sum_{f:\mathbb{I} \to A} (f(0) = x) \times (f(1) = y)

Given x:Ax:A, y:Ay:A, and z:Az:A, a pair of composable morphisms from x:Ax:A through y:Ay:A to z:Az:A is a record consisting of

  • a morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y)

  • and a morphism g:hom A(y,z)g:\mathrm{hom}_A(y, z).

The type of pairs of composable morphisms between x:Ax:A, y:Ay:A, and z:Az:A is then the respective record type.

Using functions from shapes

Let AA be a type in simplicial type theory, and let Λ 1 2\Lambda^2_1 denote the (2,1)(2,1)-horn type. Given elements x:Ax:A, y:Ay:A, and z:Az:A, a composite of morphisms from x:Ax:A through y:Ay:A to z:Az:A is a record consisting of

  • a function f:Λ 1 2Af:\Lambda^2_1 \to A

  • an identification p x:f(0,0)=xp_x:f(0, 0) = x

  • an identification p y:f(0,1)=yp_y:f(0, 1) = y

  • an identification p z:f(1,1)=zp_z:f(1, 1) = z

The type of composites of morphisms comp A(x,y,z)\mathrm{comp}_A(x, y, z) between x:Ax:A, y:Ay:A, and z:Az:A is then the respective record type.

Unique composites

Definition

A pair of composable morphisms (f,g)(f, g) is uniquely composable if there exists a unique morphism h:hom A(x,z)h:\mathrm{hom}_A(x, z) and function k:Δ 2Ak:\Delta^2 \to A such that k(0,0)=xk(0, 0) = x, k(0,1)=yk(0, 1) = y, k(1,1)=zk(1, 1) = z, k (0,0),(0,1)=fk_{(0, 0), (0, 1)} = f, k (0,1),(1,1)=gk_{(0, 1), (1, 1)} = g, k (0,0),(1,1)=hk_{(0, 0), (1, 1)} = h:

isUniquelyComposable(f,g)isContr( h:hom A(x,z) k:Δ 2A((k(0,0)=x)×(k(0,1)=y)×(k(1,1)=z)× (k (0,0),(0,1)=f)×(k (0,1),(1,1)=g)×(k (0,0),(1,1)=h)))\mathrm{isUniquelyComposable}(f, g) \coloneqq \mathrm{isContr}\left(\sum_{h:\mathrm{hom}_A(x, z)}\sum_{k:\Delta^2 \to A} \left( \begin{array}{c} (k(0, 0) = x) \times (k(0, 1) = y) \times (k(1, 1) = z) \times \\ (k_{(0, 0), (0, 1)} = f) \times (k_{(0, 1), (1, 1)} = g) \times (k_{(0, 0), (1, 1)} = h) \end{array} \right)\right)

Definition

A morphism h:hom A(x,z)h:\mathrm{hom}_A(x, z) is said to be the unique composite of (f,g)(f, g) if there exists a unique function k:Δ 2Ak:\Delta^2 \to A such that k(0,0)=xk(0, 0) = x, k(0,1)=yk(0, 1) = y, k(1,1)=zk(1, 1) = z, k (0,0),(0,1)=fk_{(0, 0), (0, 1)} = f, k (0,1),(1,1)=gk_{(0, 1), (1, 1)} = g, k (0,0),(1,1)=hk_{(0, 0), (1, 1)} = h and (h,k)(h, k) is the center of contraction of the dependent sum type:

h:hom A(x,z) k:Δ 2A((k(0,0)=x)×(k(0,1)=y)×(k(1,1)=z)× (k (0,0),(0,1)=f)×(k (0,1),(1,1)=g)×(k (0,0),(1,1)=h))\sum_{h:\mathrm{hom}_A(x, z)}\sum_{k:\Delta^2 \to A} \left( \begin{array}{c} (k(0, 0) = x) \times (k(0, 1) = y) \times (k(1, 1) = z) \times \\ (k_{(0, 0), (0, 1)} = f) \times (k_{(0, 1), (1, 1)} = g) \times (k_{(0, 0), (1, 1)} = h) \end{array} \right)

Identity morphisms are always uniquely composable:

  • Every morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y) is uniquely composable with the identity morphism id A(x):hom A(x,x)\mathrm{id}_A(x):\mathrm{hom}_A(x, x), whose unique composite is the original morphism ff itself.

  • The identity morphism id A(y):hom A(y,y)\mathrm{id}_A(y):\mathrm{hom}_A(y, y) is uniquely composable with every morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y), whose unique composite is the original morphism ff itself.

Last revised on April 10, 2025 at 17:21:08. See the history of this page for a list of all contributions to it.