nLab unique composite

Redirected from "unique composites".

Context

(,1)(\infty,1)-Category theory

Internal (,1)(\infty,1)-Categories

Directed homotopy type theory

Contents

 Idea

The notion of unique composition of a composable pair of morphisms in simplicial type theory, since composition of a composible pair of morphisms isn’t unique in general.

Definition

We work in simplicial type theory with a directed interval 𝕀\mathbb{I}.

Using functions from shapes

Let the 2-simplex type be defined as

Δ 2 s:𝕀 t:𝕀st\Delta^2 \coloneqq \sum_{s:\mathbb{I}} \sum_{t:\mathbb{I}} s \leq t

and let the (2,1)-horn type be defined as

Λ 1 2 s:𝟚 t:𝟚(s= 𝕀0)(t= 𝕀1)\Lambda_1^2 \coloneqq \sum_{s:\mathbb{2}} \sum_{t:\mathbb{2}} (s =_\mathbb{I} 0) \vee (t =_\mathbb{I} 1)

where PQP \vee Q is the disjunction of the types PP and QQ. Since sts \leq t implies (s= 𝕀0)(t= 𝕀1)(s =_{\mathbb{I}} 0) \vee (t =_{\mathbb{I}} 1) for all s:𝕀s:\mathbb{I} and t:𝕀t:\mathbb{I}, we have a canonical function

(λt:𝕀.t,λt:𝕀.t,P):Δ 2Λ 1 2(\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P):\Delta^2 \to \Lambda^2_1

which is a tuple consisting of two copies of the identity function on 𝕀\mathbb{I} and a dependent function PP that takes the witness that sts \leq t to a witness that (s= 𝕀0)(t= 𝕀1)(s =_{\mathbb{I}} 0) \vee (t =_{\mathbb{I}} 1). By precomposition, this leads to a function

λu.u(λt:𝕀.t,λt:𝕀.t,P):(Δ 2A)(Λ 1 2A)\lambda u.u \circ (\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P):(\Delta^2 \to A) \to (\Lambda^2_1 \to A)

for all types AA.

Definition

A composable pair of morphisms k:Λ 1 2Ak:\Lambda^2_1 \to A is uniquely composable if the fiber type of λu.u(λt:𝕀.t,λt:𝕀.t,P)\lambda u.u \circ (\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P) at kk is a contractible type:

isUniquelyComposable(f)isContr( h:Δ 2Ah(λt:𝕀.t,λt:𝕀.t,P)=k)\mathrm{isUniquelyComposable}(f) \coloneqq \mathrm{isContr}\left(\sum_{h:\Delta^2 \to A} h \circ (\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P) = k \right)

Let h 0,2:𝕀Δ 2h_{0,2}:\mathbb{I} \to \Delta^2 be the face map which represents the unique morphism from 00 to 22 in the 2-simplex.

Definition

Let h:Δ 2Ah:\Delta^2 \to A be the unique commutative triangle of the uniquely composable morphism k:Λ 1 2Ak:\Lambda^2_1 \to A. The function hh 0,2:𝕀Ah \circ h_{0, 2}:\mathbb{I} \to A is the unique composite of kk.

Using morphisms

Definition

A composable pair of morphisms (f,g)(f, g) is uniquely composable if there exists a unique morphism h:hom A(x,z)h:\mathrm{hom}_A(x, z) and function k:Δ 2Ak:\Delta^2 \to A such that k(0,0)=xk(0, 0) = x, k(0,1)=yk(0, 1) = y, k(1,1)=zk(1, 1) = z, k (0,0),(0,1)=fk_{(0, 0), (0, 1)} = f, k (0,1),(1,1)=gk_{(0, 1), (1, 1)} = g, k (0,0),(1,1)=hk_{(0, 0), (1, 1)} = h:

isUniquelyComposable(f,g)isContr( h:hom A(x,z) k:Δ 2A((k(0,0)=x)×(k(0,1)=y)×(k(1,1)=z)× (k (0,0),(0,1)=f)×(k (0,1),(1,1)=g)×(k (0,0),(1,1)=h)))\mathrm{isUniquelyComposable}(f, g) \coloneqq \mathrm{isContr}\left(\sum_{h:\mathrm{hom}_A(x, z)}\sum_{k:\Delta^2 \to A} \left( \begin{array}{c} (k(0, 0) = x) \times (k(0, 1) = y) \times (k(1, 1) = z) \times \\ (k_{(0, 0), (0, 1)} = f) \times (k_{(0, 1), (1, 1)} = g) \times (k_{(0, 0), (1, 1)} = h) \end{array} \right)\right)

Definition

A morphism h:hom A(x,z)h:\mathrm{hom}_A(x, z) is said to be the unique composite of (f,g)(f, g) if there exists a unique function k:Δ 2Ak:\Delta^2 \to A such that k(0,0)=xk(0, 0) = x, k(0,1)=yk(0, 1) = y, k(1,1)=zk(1, 1) = z, k (0,0),(0,1)=fk_{(0, 0), (0, 1)} = f, k (0,1),(1,1)=gk_{(0, 1), (1, 1)} = g, k (0,0),(1,1)=hk_{(0, 0), (1, 1)} = h and (h,k)(h, k) is the center of contraction of the dependent sum type:

h:hom A(x,z) k:Δ 2A((k(0,0)=x)×(k(0,1)=y)×(k(1,1)=z)× (k (0,0),(0,1)=f)×(k (0,1),(1,1)=g)×(k (0,0),(1,1)=h))\sum_{h:\mathrm{hom}_A(x, z)}\sum_{k:\Delta^2 \to A} \left( \begin{array}{c} (k(0, 0) = x) \times (k(0, 1) = y) \times (k(1, 1) = z) \times \\ (k_{(0, 0), (0, 1)} = f) \times (k_{(0, 1), (1, 1)} = g) \times (k_{(0, 0), (1, 1)} = h) \end{array} \right)

Properties

Identity morphisms are always uniquely composable:

  • Every morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y) is uniquely composable with the identity morphism id A(x):hom A(x,x)\mathrm{id}_A(x):\mathrm{hom}_A(x, x), whose unique composite is the original morphism ff itself.

  • The identity morphism id A(y):hom A(y,y)\mathrm{id}_A(y):\mathrm{hom}_A(y, y) is uniquely composable with every morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y), whose unique composite is the original morphism ff itself.

References

The phrase “unique composite” appears in:

Last revised on June 1, 2025 at 04:45:26. See the history of this page for a list of all contributions to it.