Arguments that some effects in topological phases of matter are “unstable” or “fragile” in that the relevant deformation class of their valence bundles over the Brillouin torus is not their class in topological K-theory (as assumed by the K-theory classification of topological phases of matter) but an unstable homotopy class (what may be called a class in generalized nonabelian cohomology) such as of maps to a Grassmannian space (or more general flag variety) classifying (systems of) sub-bundles of a trivial vector bundle of fixed finite rank:
Influential precursor discussion:
More explicit highlighting of the role of the unstable case (and coinage of the term “fragile” for “unstable”):
Hoi Chun Po, Haruki Watanabe, Ashvin Vishwanath: Fragile Topology and Wannier Obstructions, Phys. Rev. Lett. 121 (2018) 126402 [doi:10.1103/PhysRevLett.121.126402]
Hoi Chun Po, Liujun Zou, T. Senthil, Ashvin Vishwanath: Faithful tight-binding models and fragile topology of magic-angle bilayer graphene, Phys. Rev. B 99 (2019) 195455 [doi:10.1103/PhysRevB.99.195455, arXiv:1808.02482]
Adrien Bouhon, Tomáš Bzdušek, Robert-Jan Slager: Geometric approach to fragile topology beyond symmetry indicators, Phys. Rev. B 102 (2020) 115135 [doi:10.1103/PhysRevB.102.115135, arXiv:2005.02044]
Applications:
Adrien Bouhon, Robert-Jan Slager, around equation (3) in: Multi-gap topological conversion of Euler class via band-node braiding: minimal models, PT-linked nodal rings, and chiral heirs [arXiv:2203.16741]
Zory Davoyan, Wojciech J. Jankowski, Adrien Bouhon, Robert-Jan Slager, section II.A in: Three-dimensional -symmetric topological phases with Pontryagin index [doi:10.1103/PhysRevB.109.165125 arXiv:2308.15555]
Expositions with an eye towards non-abelian braiding of band nodes in momentum space:
Gunnar F. Lange: Multi-gap topology & non-abelian braiding in -space, talk at University of Oslo (Feb 2023) pdf]
Adrien Bouhon: Non-Abelian and Euler multi-gap topologies in crystalline materials, talk at: Quantum Information and Quantum Matter, CQTS @ NYU Abu Dhabi (May 2023) pdf]
Further discussion:
Barry Bradlyn, Zhijun Wang, Jennifer Cano, B. Andrei Bernevig: Disconnected Elementary Band Representations, Fragile Topology, and Wilson Loops as Topological Indices: An Example on the Triangular Lattice, Phys. Rev. B 99 (2019) 045140 [doi:10.1103/PhysRevB.99.045140, arXiv:1807.09729]
Zhi-Da Song, Luis Elcoro, B. Andrei Bernevig: Real Space Invariants: Twisted Bulk-Boundary Correspondence of Fragile Topology, Science 367 6479 (2020) 794-797 [doi:10.1126/science.aaz7650, arXiv:1910.06869]
Zhida Song, L. Elcoro, Nicolas Regnault, B. Andrei Bernevig: Fragile Phases As Affine Monoids: Classification and Material Examples, Phys. Rev. X 10 031001 (2020) [doi:10.1103/PhysRevX.10.031001, arXiv:1905.03262]
Simon Becker, Zhongkai Tao, Mengxuan Yang: Fragile topology on solid grounds: a mathematical perspective [arXiv:2502.03442]
Last revised on July 30, 2025 at 21:08:13. See the history of this page for a list of all contributions to it.