# nLab simplicial skeleton

## Theorems

This entry is about the notion of (co)skeleta of simplicial sets. For the notion of skeleton of a category see skeleton.

# Contents

## Definition

For $\Delta$ the simplex category write $\Delta_{\leq n}$ for its full subcategory on the objects $[0], [1], \cdots, [n]$. The inclusion $\Delta|_{\leq n} \hookrightarrow \Delta$ induces a truncation functor

$tr_n : sSet = [\Delta^{op}, Set] \to [\Delta_{\leq n},Set]$

that takes a simplicial set and restricts it to its degrees $\leq n$.

This functor has a left adjoint, given by left Kan extension

$sk_n : [\Delta_{\leq n},Set] \to SSet$

called the $n$-skeleton

and a right adjoint, given by right Kan extension

$cosk_n : [\Delta_{\leq n},Set] \to SSet$

called the $n$-coskeleton.

$( sk_n \dashv tr_n \dashv cosk_n) \;\; : \;\; sSet_{\leq n} \stackrel{\overset{sk_n}{\to}}{\stackrel{\overset{tr_n}{\leftarrow}}{\underset{cosk_n}{\to}}} sSet \,.$

The $n$-skeleton produces a simplicial set that is freely filled with degenerate simplices above degree $n$.

Write

$\mathbf{sk}_n := sk_n \circ tr_n: sSet \to sSet$

and

$\mathbf{cosk}_n := cosk_n \circ tr_n: sSet \to sSet$

for the composite functors. Often by slight abuse of notation we suppress the boldface and just write $sk_n : sSet \to sSet$ and $cosk_n : sSet \to sSet$.

these in turn form an adjunction

$( \mathbf{sk}_n \dashv \mathbf{cosk}_n) \;\; : \;\; sSet \stackrel{\leftarrow}{\to} sSet \,.$

So the $k$-coskeleton of a simplicial set $X$ is given by the formula

$\mathbf{cosk}_k X : [n] \mapsto Hom_{sSet}(\mathbf{sk}_k \Delta[n], X) \,.$

Simplicial sets isomorphic to objects in the image of $cosk_n$ are called coskeletal simplicial sets.

## Properties

### General

###### Proposition

For $X \in$ sSet, the following are equivalent:

• $X$ is $n$-coskeletal;

• on $X$ the unit $X \to \mathbf{cosk}_n(X)$ of the adjunction is an isomorphism;

• the map

$X_k = Hom(\Delta[k], X) \stackrel{tr_n}{\to} Hom(tr_n(\Delta[k]), tr_n(X))$

is a bijection for all $k \gt n$

• for $k \gt n$ and every morphism $\partial\Delta[k] \to X$ from the boundary of the $k$-simplex there exists a unique filler $\Delta[k] \to X$

$\array{ \partial \Delta[k] &\to& X \\ \downarrow & \nearrow \\ \Delta[k] }$
###### Remark

So in particular if $X$ is an $n$-coskeletal Kan complex, all its simplicial homotopy groups above degree $(n-1)$ are trivial.

### Truncation and Postnikov towers

###### Proposition

For each $n \in \mathbb{N}$, the unit of the adjunction

$X \to \mathbf{cosk}_n(X)$

induces an isomorphism on all simplicial homotopy groups in degree $\lt n$.

It follows from the above that for $X$ a Kan complex, the sequence

$X = \underset{\leftarrow}{\lim}\, cosk_n X \to \cdots \to cosk_{n+1} X \to cosk_{n} X \to \cdots \to *$

is a Postnikov tower for $X$.

For the interpretation of this in terms of (n,1)-toposes inside the (∞,1)-topos ∞Grpd see n-truncated object in an (∞,1)-category, example In ∞Grpd and Top.

## Examples

• The nerve of a category is a 2-coskeletal simplicial set.

• A Kan complex that is $(n+1)$-coskeletal is equivalent to (the nerve of) an n-groupoid.

• A 0-coskeletal simplicial set $X$ is (-1)-truncated and hence either empty or a contractible Kan complex , $X \stackrel{\simeq}{\to} *$ that is the nerve $X = N(C)$ of a groupoid $C$ that has a equivalence of categories $C \simeq *$.

## References

Standard textbook references are

A classical article that amplifies the connection of the coskeleton operation to Postnikov towers is

Revised on December 2, 2013 12:31:16 by Urs Schreiber (77.251.114.72)