# nLab smooth map

### Context

#### Differential geometry

differential geometry

synthetic differential geometry

# Contents

## Definition

A function on (some open subset of) a cartesian space $\mathbb{R}^n$ with values in the real line $\mathbb{R}$ is smooth, or infinitely differentiable, if all its derivatives exist at all points. More generally, if $A \subseteq \mathbb{R}^n$ is any subset, a function $f: A \to \mathbb{R}$ is defined to be smooth if it has a smooth extension to an open subset containing $A$.

By coinduction: A function $f : \mathbb{R} \to \mathbb{R}$ is smooth if (1) its derivative exists and (2) the derivative is itself a smooth function.

For $A \subseteq \mathbb{R}^n$, a smooth map $\phi: A \to \mathbb{R}^m$ is a function such that $\pi \circ \phi$ is a smooth function for every linear functional $\pi: \mathbb{R}^m \to \mathbb{R}$. (In the case of finite-dimensional codomains as here, it suffices to take the $\pi$ to range over the $m$ coordinate projections.)

The concept can be generalised from cartesian spaces to Banach spaces and some other infinite-dimensional spaces. There is a locale-based analogue suitable for constructive mathematics which is not described as a function of points but as a special case of a continuous map (in the localic sense).

A manifold whose transition functions are smooth maps is a smooth manifold. The category Diff is the category whose objects are smooth manifolds and whose morphisms are smooth maps betweeen them.

Yet more generally, the morphisms between generalised smooth spaces are smooth maps.

For functions between manifolds that fall short of full smoothness, see differentiable map.

## Properties

Basic facts about smooth functions are

## Examples

Every analytic functions (for instance a holomorphic function) is also a smooth function.

A crucial property of smooth functions, however, is that they contain also bump functions.

Examples of sequences of local structures

geometrypointfirst order infinitesimal$\subset$formal = arbitrary order infinitesimal$\subset$local = stalkwise$\subset$finite
$\leftarrow$ differentiationintegration $\to$
smooth functionsderivativeTaylor seriesgermsmooth function
curve (path)tangent vectorjetgerm of curvecurve
smooth spaceinfinitesimal neighbourhoodformal neighbourhoodgerm of a spaceopen neighbourhood
function algebrasquare-0 ring extensionnilpotent ring extension/formal completionring extension
arithmetic geometry$\mathbb{F}_p$ finite field$\mathbb{Z}_p$ p-adic integers$\mathbb{Z}_{(p)}$ localization at (p)$\mathbb{Z}$ integers
Lie theoryLie algebraformal grouplocal Lie groupLie group
symplectic geometryPoisson manifoldformal deformation quantizationlocal strict deformation quantizationstrict deformation quantization

Revised on March 10, 2015 13:49:57 by Urs Schreiber (195.113.30.252)