transfinite arithmetic, cardinal arithmetic, ordinal arithmetic
prime field, p-adic integer, p-adic rational number, p-adic complex number
arithmetic geometry, function field analogy
Riemann integration, Lebesgue integration
line integral/contour integration
integration of differential forms
integration over supermanifolds, Berezin integral, fermionic path integral
Kontsevich integral, Selberg integral, elliptic Selberg integral
integration in ordinary differential cohomology
integration in differential K-theory
What has come to be called Iwasawa-Tate theory is a method of expressing zeta functions, L-functions and theta functions as adelic integrals over idele groups and deriving this way their fundamental properties such as their analytic continuation, their functional equation and their Euler product form.
John Tate in his thesis (Tate 50) had generalized the notion of zeta function according to his advisor Emil Artin from “the sum over integral ideals of certain type of ideal character” to
the adelic integral over the idèle group of a rather general weight function times the idèle character which is trivial on field elements. The role of Hecke’s complicated theta-formulas for theta functions formed over a lattice in -dimensional space of classical number theory can be played by a simple Poisson formula for general function of valuation vectors, summed over the discrete subgroup of field elements
Kenkichi Iwasawa in Iwasawa 5x has rediscovered and extended this approach using the wider study of invariant integration? on locally compact groups over ideles. It is distinguished from the related but different subject of Iwasawa theory (cf. wikipedia)
The original articles are
John Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Princeton, May 1950, thesis; reproduced in Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) pp. 305–347, Acad, Press 1967
Kenkichi Iwasawa, A note on functions, Proc. ICM 1950, link MR0044534; On the rings of valuation vectors, Ann. Math. (II) 57:2 (Mar., 1953), pp. 331-356 jstor; Letter to Jean Dieudonne link
Reviews include
Paul Garrett, Iwasawa-Tate on ζ-functions and L-functions, 2011
(pdf)
cyclopaedia.info, Iwasawa-Tate theory
Wikipedia, Tate’s thesis
Bibliographic fragments concerning Iwasawa-Tate theory, (pdf)
Further developments include
Last revised on August 27, 2014 at 22:46:44. See the history of this page for a list of all contributions to it.