nLab Lagrange's theorem

Contents

Contents

Idea

In group theory, Lagrange’s theorem asserts that for GG a finite group and HGH \,\subset\, G a subgroup, the order |H|\left\vert H\right\vert of HH divides the order |G|\left\vert G \right\vert of GG, in that the quotient

[G:H]|G||H| [G : H] \;\coloneqq\; \frac { \left\vert G \right\vert } { \left\vert H \right\vert } \;\;\; \in \; \mathbb{N}

is a natural number, called the index of HH in GG.

A partial converse to Lagrange’s theorem is

References

Named after:

  • Joseph-Louis Lagrange, Réflexions sur la résolution algébrique des équations, Nouveaux mémoires de l’Académie royale des sciences et belles-lettres de Berlin, années 1770 et 1771, Œuvres complètes, tome 3, 205-421 (mathdoc)

More on the history:

See also:

Created on December 15, 2021 at 18:50:05. See the history of this page for a list of all contributions to it.