nLab
Lie group

Contents

Context

Group Theory

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

graded differential cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

\infty-Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Contents

Idea

A Lie group is a group with smooth structure.

Definition

Definition

A Lie group is a smooth manifold whose underlying set of elements is equipped with the structure of a group such that the group multiplication and inverse-assigning functions are smooth functions.

In other words, a Lie group is a group object internal to the category SmthMfd of smooth manifolds.

Usually the smooth manifold is assumed to be defined over the real numbers and to be of finite dimension (f.d.), but extensions of the definition to some other ground fields or to -infinite-dimensional manifolds are also relevant, sometimes under other names (such as Fréchet Lie group when the underlying manifold is an infinite-dimensional Fréchet manifold).

A real Lie group is called a compact Lie group (or connected, simply connected Lie group, etc) if its underlying topological space is compact (or connected, simply connected, etc).

Every connected finite dimensional real Lie group is homeomorphic to a product of a compact Lie group (its maximal compact subgroup) and a Euclidean space.

Every abelian connected compact finite dimensional real Lie group is a torus (a product of circles T n=S 1×S 1××S 1T^n = S^1\times S^1 \times \ldots \times S^1).

There is an infinitesimal version of a Lie group, a so-called local Lie group, where the multiplication and the inverse are only partially defined, namely if the arguments of these operations are in a sufficiently small neighborhood of identity. There is a natural equivalence of local Lie groups by means of agreeing (topologically and algebraically) on a smaller neighborhood of the identity. The category of local Lie groups is equivalent to the category of connected and simply connected Lie groups.

The first order infinitesimal approximation to a Lie group is its Lie algebra.

Properties

Lie’s three theorems

Sophus Lie has proved several theorems – Lie's three theorems – on the relationship between Lie algebras and Lie groups. What is called Lie's third theorem is about the equivalence of categories of f.d. real Lie algebras and local Lie groups. Élie Cartan has extended this to a global integrability theorem called the Cartan-Lie theorem, nowadays after Serre also called Lie’s third theorem.

Classification

Prposition

Every connected finite-dimensional real Lie group is homeomorphic to a product of a compact Lie group and a Euclidean space. Every abelian connected compact f.d. real Lie group is a torus (a product of circles T n=S 1×S 1××S 1T^n = S^1\times S^1 \times \ldots \times S^1).

The simple Lie groups have a classification into infinite series of

and a finite snumber o

Different Lie group structures on a group

For GG a bare group (without smooth structure) there may be more than one way to equip it with the structure of a Lie group.

Example

As bare abelian groups, the Cartesian spaces n\mathbb{R}^n are, for all nn, vector spaces over the rational numbers \mathbb{Q} whose dimension is the cardinality of the continuum, 2 02^{\aleph_0}.

Therefore these are all isomorphic as bare group. But equipped with their canonical Lie group structure (as in the Examples) they are of course not isomorphic.

Different topologies on a Lie group

  • Linus Kramer, The topology of a simple Lie group is essentially unique, (arXiv)

Abstract: We study locally compact group topologies on simple Lie groups. We show that the Lie group topology on such a group SS is very rigid: every ‘abstract’ isomorphism between SS and a locally compact and σ\sigma-compact group Γ\Gamma is automatically a homeomorphism, provided that SS is absolutely simple. If SS is complex, then non-continuous field automorphisms of the complex numbers have to be considered, but that is all.

Which topological groups admit Lie group structure?

Homotopy groups

List of homotopy groups of the manifolds underlying the classical Lie groups are for instance in (Abanov 09).

Applications

In differential geometry

A central concept of differential geometry is that of a GG-principal bundle PXP \to X over a smooth manifold XX for GG a Lie group.

In gauge theory

In the physics of gauge fields – gauge theory – Lie groups appear as local gauge groups parameterizing gauge transformations: notably the Yang-Mills field is modeled by a GG-principal bundle with connection for some Lie group GG. For models that describe experimental observations the group GG in question is a quotient of a product of special unitary groups and the circle group. For details see standard model of particle physics

In higher category theory

The notion of group generalizes in higher category theory to that of 2-group, … ∞-group.

Accordingly, so does the notion of Lie group generalize to Lie 2-group, … ∞-Lie group. For details see ∞-Lie groupoid.

Examples

Basic examples

Classical Lie groups

The classical Lie groups include

Exceptional Lie groups

The exceptional Lie groups incude

Infinite-dimensional examples

Examples of sequences of local structures

geometrypointfirst order infinitesimal\subsetformal = arbitrary order infinitesimal\subsetlocal = stalkwise\subsetfinite
\leftarrow differentiationintegration \to
smooth functionsderivativeTaylor seriesgermsmooth function
curve (path)tangent vectorjetgerm of curvecurve
smooth spaceinfinitesimal neighbourhoodformal neighbourhoodgerm of a spaceopen neighbourhood
function algebrasquare-0 ring extensionnilpotent ring extension/formal completionring extension
arithmetic geometry𝔽 p\mathbb{F}_p finite field p\mathbb{Z}_p p-adic integers (p)\mathbb{Z}_{(p)} localization at (p)\mathbb{Z} integers
Lie theoryLie algebraformal grouplocal Lie groupLie group
symplectic geometryPoisson manifoldformal deformation quantizationlocal strict deformation quantizationstrict deformation quantization

References

General

  • A. L. Onishchik (ed.) Lie Groups and Lie Algebras

    • I. A. L. Onishchik, E. B. Vinberg, Foundations of Lie Theory,

    • II. V. V. Gorbatsevich, A. L. Onishchik, Lie Transformation Groups

    Encyclopaedia of Mathematical Sciences, Volume 20, Springer 1993

  • Hans Duistermaat, J. A. C. Kolk, Lie groups, 2000

  • Joachim Hilgert, Karl-Hermann Neeb, Structure and Geometry of Lie Groups, Springer Monographs in Mathematics, Springer-Verlag New York, 2012 (doi:10.1007/978-0-387-84794-8)

  • Mark Haiman, lecture notes by Theo Johnson-Freyd, Lie groups, Berkeley 2009 (pdf)

  • Eckhard Meinrenken, Lie groups and Lie algebas, Lecture notes 2010 (pdf)

Homotopy groups

  • Alexander Abanov, Homotopy groups of Lie groups 2009 (pdf)

On infinite-dimensional Lie groups

References on infinite-dimensional Lie groups

  • Andreas Kriegl, Peter Michor, Regular infinite dimensional Lie groups Journal of Lie Theory

    Volume 7 (1997) 61-99 (pdf)

  • Rudolf Schmid, Infinite-Dimensional Lie Groups and Algebras in Mathematical Physics Advances in Mathematical Physics Volume 2010, (pdf)

  • Josef Teichmann, Infinite dimensional Lie Theory from the point of view of Functional Analysis (pdf)

  • Karl-Hermann Neeb, Monastir summer school: Infinite-dimensional Lie groups (pdf)

Last revised on April 10, 2019 at 08:53:13. See the history of this page for a list of all contributions to it.