nLab Poisson n-algebra

Redirected from "Pn-algebras".
Contents

Context

Higher algebra

Symplectic geometry

Contents

Definition

For nn \in \mathbb{N}, a Poisson nn-algebra AA is a Poisson algebra AA in a category of chain complexes with Poisson bracket of degree (1n)(1-n) (which is a bracket of degree 0 on B n1A\mathbf{B}^{n-1} A).

Properties

Relation to E nE_n-algebras

The homology of an E-n algebra for n2n \geq 2 is a Poisson nn-algebra.

Moreover, in chain complexes over a field of characteristic zero the E-n operad is formal (see the little n-disk operad is formal), hence equivalent to its homology, and so in this context E nE_n-algebras are equivalent to Poisson nn-algebras.

This fact is a higher analog of Kontsevich formality. It means that every higher dimensional prequantum field theory given by a P nP_n algebra does have a deformation quantization (as factorization algebras) and that the space of choices of these is a torsor over the automorphism infinity-group of E nE_n, a higher analog of the Grothendieck-Teichmüller group.

See also tho MO discussion linked to below.

Relation to L L_\infty-algebras

There is a forgetful functor from Poisson nn-algebras to dg-Lie algebras given by forgetting the associative algebra structure and by shifting the underlying chain complex by (n1)(n-1).

Conversely, this functor has a derived left adjoint which sends a dg-Lie algebra (𝔤,d)(\mathfrak{g},d) to its universal enveloping Poisson n-algebra (Sym(𝔤[n1],d))(Sym(\mathfrak{g}[n-1], d)). (See also Gwilliam, section 4.5).

Examples

duality between \;algebra and geometry

A\phantom{A}geometryA\phantom{A}A\phantom{A}categoryA\phantom{A}A\phantom{A}dual categoryA\phantom{A}A\phantom{A}algebraA\phantom{A}
A\phantom{A}topologyA\phantom{A}A\phantom{A}NCTopSpaces H,cpt\phantom{NC}TopSpaces_{H,cpt}A\phantom{A}A\phantom{A}Gelfand-KolmogorovAlg op\overset{\text{<a href="https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem">Gelfand-Kolmogorov</a>}}{\hookrightarrow} Alg^{op}_{\mathbb{R}}A\phantom{A}A\phantom{A}commutative algebraA\phantom{A}
A\phantom{A}topologyA\phantom{A}A\phantom{A}NCTopSpaces H,cpt\phantom{NC}TopSpaces_{H,cpt}A\phantom{A}A\phantom{A}Gelfand dualityTopAlg C *,comm op\overset{\text{<a class="existingWikiWord" href="https://ncatlab.org/nlab/show/Gelfand+duality">Gelfand duality</a>}}{\simeq} TopAlg^{op}_{C^\ast, comm}A\phantom{A}A\phantom{A}comm. C-star-algebraA\phantom{A}
A\phantom{A}noncomm. topologyA\phantom{A}A\phantom{A}NCTopSpaces H,cptNCTopSpaces_{H,cpt}A\phantom{A}A\phantom{A}Gelfand dualityTopAlg C * op\overset{\phantom{\text{Gelfand duality}}}{\coloneqq} TopAlg^{op}_{C^\ast}A\phantom{A}A\phantom{A}general C-star-algebraA\phantom{A}
A\phantom{A}algebraic geometryA\phantom{A}A\phantom{A}NCSchemes Aff\phantom{NC}Schemes_{Aff}A\phantom{A}A\phantom{A}almost by def.TopAlg op\overset{\text{<a href="https://ncatlab.org/nlab/show/affine+scheme#AffineSchemesFullSubcategoryOfOppositeOfRings">almost by def.</a>}}{\simeq} \phantom{Top}Alg^{op} A\phantom{A}AA\phantom{A} \phantom{A}
A\phantom{A}commutative ringA\phantom{A}
A\phantom{A}noncomm. algebraicA\phantom{A}
A\phantom{A}geometryA\phantom{A}
A\phantom{A}NCSchemes AffNCSchemes_{Aff}A\phantom{A}A\phantom{A}Gelfand dualityTopAlg fin,red op\overset{\phantom{\text{Gelfand duality}}}{\coloneqq} \phantom{Top}Alg^{op}_{fin, red}A\phantom{A}A\phantom{A}fin. gen.
A\phantom{A}associative algebraA\phantom{A}A\phantom{A}
A\phantom{A}differential geometryA\phantom{A}A\phantom{A}SmoothManifoldsSmoothManifoldsA\phantom{A}A\phantom{A}Milnor's exerciseTopAlg comm op\overset{\text{<a href="https://ncatlab.org/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras">Milnor's exercise</a>}}{\hookrightarrow} \phantom{Top}Alg^{op}_{comm}A\phantom{A}A\phantom{A}commutative algebraA\phantom{A}
A\phantom{A}supergeometryA\phantom{A}A\phantom{A}SuperSpaces Cart n|q\array{SuperSpaces_{Cart} \\ \\ \mathbb{R}^{n\vert q}}A\phantom{A}A\phantom{A}Milnor's exercise Alg 2AAAA op C ( n) q\array{ \overset{\phantom{\text{Milnor's exercise}}}{\hookrightarrow} & Alg^{op}_{\mathbb{Z}_2 \phantom{AAAA}} \\ \mapsto & C^\infty(\mathbb{R}^n) \otimes \wedge^\bullet \mathbb{R}^q }A\phantom{A}A\phantom{A}supercommutativeA\phantom{A}
A\phantom{A}superalgebraA\phantom{A}
A\phantom{A}formal higherA\phantom{A}
A\phantom{A}supergeometryA\phantom{A}
A\phantom{A}(super Lie theory)A\phantom{A}
ASuperL Alg fin 𝔤A\phantom{A}\array{ Super L_\infty Alg_{fin} \\ \mathfrak{g} }\phantom{A}AALada-MarklA sdgcAlg op CE(𝔤)A\phantom{A}\array{ \overset{ \phantom{A}\text{<a href="https://ncatlab.org/nlab/show/L-infinity-algebra#ReformulationInTermsOfSemifreeDGAlgebra">Lada-Markl</a>}\phantom{A} }{\hookrightarrow} & sdgcAlg^{op} \\ \mapsto & CE(\mathfrak{g}) }\phantom{A}A\phantom{A}differential graded-commutativeA\phantom{A}
A\phantom{A}superalgebra
A\phantom{A} (“FDAs”)

in physics:

A\phantom{A}algebraA\phantom{A}A\phantom{A}geometryA\phantom{A}
A\phantom{A}Poisson algebraA\phantom{A}A\phantom{A}Poisson manifoldA\phantom{A}
A\phantom{A}deformation quantizationA\phantom{A}A\phantom{A}geometric quantizationA\phantom{A}
A\phantom{A}algebra of observablesA\phantom{A}space of statesA\phantom{A}
A\phantom{A}Heisenberg pictureA\phantom{A}Schrödinger pictureA\phantom{A}
A\phantom{A}AQFTA\phantom{A}A\phantom{A}FQFTA\phantom{A}
A\phantom{A}higher algebraA\phantom{A}A\phantom{A}higher geometryA\phantom{A}
A\phantom{A}Poisson n-algebraA\phantom{A}A\phantom{A}n-plectic manifoldA\phantom{A}
A\phantom{A}En-algebrasA\phantom{A}A\phantom{A}higher symplectic geometryA\phantom{A}
A\phantom{A}BD-BV quantizationA\phantom{A}A\phantom{A}higher geometric quantizationA\phantom{A}
A\phantom{A}factorization algebra of observablesA\phantom{A}A\phantom{A}extended quantum field theoryA\phantom{A}
A\phantom{A}factorization homologyA\phantom{A}A\phantom{A}cobordism representationA\phantom{A}

algebraic deformation quantization

dimensionclassical field theoryLagrangian BV quantum field theoryfactorization algebra of observables
general nnP-n algebraBD-n algebra?E-n algebra
n=0n = 0Poisson 0-algebraBD-0 algebra? = BD algebraE-0 algebra? = pointed space
n=1n = 1P-1 algebra = Poisson algebraBD-1 algebra?E-1 algebra? = A-∞ algebra

References

  • Alberto Cattaneo, Domenico Fiorenza, R. Longoni, Graded Poisson Algebras, Encyclopedia of Mathematical Physics, eds. J.-P. Françoise, G.L. Naber and Tsou S.T. , vol. 2, p. 560-567 (Oxford: Elsevier, 2006). (pdf)

An introduction to Poisson nn-algebras in dg-geometry/symplectic Lie n-algebroids is in section 4.2 of

For discussion in the context of perturbative quantum field theory/factorization algebras/BV-quantization see

  • Kevin Costello, Owen Gwilliam, Factorization algebras in perturbative quantum field theory : P 0P_0-operad (wikilass=‘newWikiWord’>P_0%20operad?</span>), pdf)

  • Owen Gwilliam, Factorization algebras and free field theories PhD thesis (pdf)

and for further references along these lines see at factorization algebra.

For general discusison of the relation to E-n algebras see

Last revised on November 16, 2024 at 18:02:59. See the history of this page for a list of all contributions to it.