nLab Poisson bracket Lie n-algebra

Contents

Contents

1. Idea

The Lie n-algebra that generalizes the Poisson bracket from symplectic geometry to n-plectic geometry: the Poisson bracket L L_\infty-algebra of local observables in higher prequantum geometry.

More discussion is here at n-plectic geometry.

Applied to the symplectic current (in the sense of covariant phase space theory, de Donder-Weyl field theory) this is the higher current algebra (see there) of conserved currents of a prequantum field theory.

2. Definition

Throughout, Let XX be a smooth manifold, let n1n \geq 1 a natural number and ωΩ cl n+1(X)\omega \in \Omega^{n+1}_{cl}(X) a closed differential (n+1)-form on XX. The pair (X,ω)(X,\omega) we may regard as a pre-n-plectic manifold.

We define two L-∞ algebras defined from this data and discuss their equivalence. Either of the two or any further one equivalent to the two is the Poisson bracket Lie nn-albebra of (X,ω)(X,\omega). The first definition is due to (Rogers 10), the second due to (FRS 13b). Here in notation we follow (FRS 13b).

Definition 2.1. Write

Ham n1(X)Vect(X)Ω n1(X) Ham^{n-1}(X) \subset Vect(X) \oplus \Omega^{n-1}(X)

for the subspace of the direct sum of vector fields vv on XX and differential (n-1)-forms JJ on XX satisfying

ι vω+dJ=0. \iota_v \omega + \mathbf{d} J = 0 \,.

We call these the pairs of Hamiltonian forms with their Hamiltonian vector fields.

(FRS 13b, def. 2.1.3)

Definition 2.2. The L-∞ algebra L (X,ω)L_\infty(X,\omega) has as underlying chain complex the truncated and modified de Rham complex

Ω 0(X)dΩ 1(X)ddΩ n2(X)(0,d)Ham n1(X) \Omega^0(X) \stackrel{\mathbf{d}}{\to} \Omega^1(X) \stackrel{\mathbf{d}}{\to} \cdots \stackrel{\mathbf{d}}{\to} \Omega^{n-2}(X) \stackrel{(0,\mathbf{d})}{\longrightarrow} Ham^{n-1}(X)

with the Hamiltonian pairs, def. 2.1, in degree 0 and with the 0-forms (smooth functions) in degree n1n-1, and its non-vanishing L L_\infty-brackets are as follows:

  • l 1(J)=dJl_1(J) = \mathbf{d}J

  • l k2(v 1+J 1,,v k+J k)=(1) (k+12)ι v 1v kωl_{k \geq 2}(v_1 + J_1, \cdots, v_k + J_k) = - (-1)^{\left(k+1 \atop 2\right)} \iota_{v_1 \wedge \cdots \wedge v_k}\omega.

(FRS 13b, prop. 3.1.2)

Definition 2.3. Let A¯\overline{A} be any Cech-Deligne-cocycle relative to an open cover 𝒰\mathcal{U} of XX, which gives a prequantum n-bundle for ω\omega. The L-∞ algebra dgLie Qu(X,A¯)dgLie_{Qu}(X,\overline{A}) is the dg-Lie algebra (regarded as an L L_\infty-algebra) whose underlying chain complex is

dgLie Qu(X,A¯) 0={v+θ¯Vect(X)Tot n1(𝒰,Ω )| vA¯=d Totθ¯}dgLie_{Qu}(X,\overline{A})^0 = \{v+ \overline{\theta} \in Vect(X)\oplus Tot^{n-1}(\mathcal{U}, \Omega^\bullet) \;\vert\; \mathcal{L}_v \overline{A} = \mathbf{d}_{Tot}\overline{\theta}\};

dgLie Qu(X,A¯) i>0=Tot n1i(𝒰,Ω )dgLie_{Qu}(X,\overline{A})^{i \gt 0} = Tot^{n-1-i}(\mathcal{U},\Omega^\bullet)

with differential given by d Tot\mathbf{d}_{Tot} (where TotTot refers to total complex of the Cech-de Rham double complex).

The non-vanishing dg-Lie bracket on this complex are defined to be

  • [v 1+θ¯ 1,v 2+θ¯ 2]=[v 1,v 2]+ v 1θ¯ 2 v 2θ¯ 1[v_1 + \overline{\theta}_1, v_2 + \overline{\theta}_2] = [v_1, v_2] + \mathcal{L}_{v_1}\overline{\theta}_2 - \mathcal{L}_{v_2}\overline{\theta}_1;

  • [v+θ¯,η¯]=[η,v+θ¯]= vη¯[v+ \overline{\theta}, \overline{\eta}] = - [\eta, v + \overline{\theta}] = \mathcal{L}_v \overline{\eta}.

(FRS 13b, def./prop. 4.2.1)

Proposition 2.4. There is an equivalence in the homotopy theory of L-∞ algebras

f:L (X,ω)dgLie Qu(X,A¯) f \colon L_\infty(X,\omega) \stackrel{\simeq}{\longrightarrow} dgLie_{Qu}(X,\overline{A})

between the L L_\infty-algebras of def. 2.2 and def. 2.3 (in particular def. 2.3 does not depend on the choice of A¯\overline{A}) whose underlying chain map satisfies

  • f(v+J)=vJ| 𝒰+ i=0 n(1) iι vA nif(v + J) = v - J|_{\mathcal{U}} + \sum_{i = 0}^n (-1)^i \iota_v A^{n-i}.

(FRS 13b, theorem 4.2.2)

3. Properties

The extension theorem

Proposition 3.1. Given a pre n-plectic manifold (X,ω n+1)(X,\omega_{n+1}), then the Poisson bracket Lie nn-algebra 𝔓𝔬𝔦𝔰(X,ω)\mathfrak{Pois}(X,\omega) from above is an extension of the Lie algebra of Hamiltonian vector fields Vect Ham(X)Vect_{Ham}(X), def. 2.1 by the cocycle infinity-groupoid H(X,B n1)\mathbf{H}(X,\flat \mathbf{B}^{n-1} \mathbb{R}) for ordinary cohomology with real number coefficients in that there is a homotopy fiber sequence in the homotopy theory of L-infinity algebras of the form

H(X,B d1) 𝔓𝔬𝔦𝔰(X,ω) Vect Ham(X,ω) ω[] BH(X,B d1), \array{ \mathbf{H}(X,\flat \mathbf{B}^{d-1}\mathbb{R}) &\longrightarrow& \mathfrak{Pois}(X,\omega) \\ && \downarrow \\ && Vect_{Ham}(X,\omega) &\stackrel{\omega[\bullet]}{\longrightarrow}& \mathbf{B} \mathbf{H}(X,\flat \mathbf{B}^{d-1}\mathbb{R}) } \,,

where the cocycle ω[]\omega[\bullet], when realized on the model of def. 2.2, is degreewise given by by contraction with ω\omega.

This is FRS13b, theorem 3.3.1.

As a corollary this means that the 0-truncation τ 0𝔓𝔬𝔦𝔰(X,ω)\tau_0 \mathfrak{Pois}(X,\omega) is a Lie algebra extension by de Rham cohomology, fitting into a short exact sequence of Lie algebras

0H dR d1(X)τ 0𝔓𝔬𝔦𝔰(X,ω)Vect Ham(X)0. 0 \to H^{d-1}_{dR}(X) \longrightarrow \tau_0 \mathfrak{Pois}(X,\omega) \longrightarrow Vect_{Ham}(X) \to 0 \,.

Remark 3.2. These kinds of extensions are known traditionally form current algebras.

slice-automorphism ∞-groups in higher prequantum geometry

cohesive ∞-groups:Heisenberg ∞-group\hookrightarrowquantomorphism ∞-group\hookrightarrow∞-bisections of higher Courant groupoid\hookrightarrow∞-bisections of higher Atiyah groupoid
L-∞ algebras:Heisenberg L-∞ algebra\hookrightarrowPoisson L-∞ algebra\hookrightarrowCourant L-∞ algebra\hookrightarrowtwisted vector fields

higher and integrated Kostant-Souriau extensions:

(∞-group extension of ∞-group of bisections of higher Atiyah groupoid for 𝔾\mathbb{G}-principal ∞-connection)

(Ω𝔾)FlatConn(X)QuantMorph(X,)HamSympl(X,) (\Omega \mathbb{G})\mathbf{FlatConn}(X) \to \mathbf{QuantMorph}(X,\nabla) \to \mathbf{HamSympl}(X,\nabla)
nngeometrystructureunextended structureextension byquantum extension
\inftyhigher prequantum geometrycohesive ∞-groupHamiltonian symplectomorphism ∞-groupmoduli ∞-stack of (Ω𝔾)(\Omega \mathbb{G})-flat ∞-connections on XXquantomorphism ∞-group
1symplectic geometryLie algebraHamiltonian vector fieldsreal numbersHamiltonians under Poisson bracket
1Lie groupHamiltonian symplectomorphism groupcircle groupquantomorphism group
22-plectic geometryLie 2-algebraHamiltonian vector fieldsline Lie 2-algebraPoisson Lie 2-algebra
2Lie 2-groupHamiltonian 2-plectomorphismscircle 2-groupquantomorphism 2-group
nnn-plectic geometryLie n-algebraHamiltonian vector fieldsline Lie n-algebraPoisson Lie n-algebra
nnsmooth n-groupHamiltonian n-plectomorphismscircle n-groupquantomorphism n-group

(extension are listed for sufficiently connected XX)

5. References

The Poisson bracket L L_\infty-algebra L (X,ω)L_\infty(X,\omega) was introduced in

Discussion in the broader context of higher differential geometry and higher prequantum geometry is in

See also

Last revised on July 27, 2018 at 09:36:49. See the history of this page for a list of all contributions to it.