Contents
Contents
1. Definition
An adjoint quadruple is a sequence of three adjunctions
f ! ⊣ f * ⊣ f * ⊣ f !
f_! \dashv f^* \dashv f_* \dashv f^!
between a quadruple of morphisms . That is, it is an adjoint string of length 4.
2. Properties
General
Every adjoint quadruple
( f ! ⊣ f * ⊣ f * ⊣ f ! ) : C ← f ! → f * ← f * → f ! D
(f_! \dashv f^* \dashv f_* \dashv f^!)
:
C
\stackrel{\overset{f_!}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\stackrel{\overset{f_*}{\to}}{\underset{f^!}{\leftarrow}}}}
D
induces an adjoint triple on C C
( f * f ! ⊣ f * f * ⊣ f ! f * ) : C → C ,
(f^* f_! \dashv f^* f_* \dashv f^! f_*)
:
C \to C
\,,
(hence a monad left adjoint to a comonad left adjoint to a monad) and an adjoint triple
( f ! f * ⊣ f * f * ⊣ f * f ! ) : D → D
(f_! f^* \dashv f_* f^* \dashv f_* f^!) : D \to D
on D D .
Since moreover every adjoint triple ( F ⊣ G ⊣ H ) (F \dashv G \dashv H) induces an adjoint pair ( G F ⊣ G H ) (G F \dashv G H) and an adjoint pair ( F G ⊣ H G ) (F G \dashv H G) , the adjoint quadruple above induces four adjoint pairs, such as
( f * f * f * f ! ⊣ f * f * f ! f * ) : C → C .
(f^* f_* f^* f_! \dashv f^* f_* f^! f_*) : C \to C
\,.
\,
Let
( p ! ⊣ p * ⊣ p * ⊣ p ! ) : ℰ ⟶ 𝒮
(p_! \dashv p^* \dashv p_*\dashv p^!)
\;\colon\;
\mathcal{E}
\longrightarrow
\mathcal{S}
be an adjoint quadruple of adjoint functors such that p * p^* and p ! p^! are full and faithful functors . We record some general properties of such a setup.
We write
η : id → p * p !
\eta \;\colon\; id \to p^* p_!
etc. for units and
ϵ : p ! p * → id
\epsilon \;\colon\; p_! p^* \to id
etc. for counits.
Proposition/Definition 2.1 . We have commuting diagrams , natural in X ∈ ℰ X \in \mathcal{E} , S ∈ 𝒮 S \in \mathcal{S}
p * X ⟶ ≃ ϵ p * X − 1 p ! p * p * X p * ( η X ) ↓ ↘ θ X ↓ p ! ( ϵ X ) p * p * p ! X ⟶ η p ! X − 1 p ! X
\array{
p_*X &\underoverset{\simeq}{\epsilon_{p^* X}^{-1}}{\longrightarrow}& p_! p^* p_*X
\\
{}^{\mathllap{p_*(\eta_X)}}\downarrow
&\searrow^{\mathrlap{\theta_X}}&
\downarrow^{\mathrlap{p_!(\epsilon_X)}}
\\
p_* p^* p_! X &\stackrel{\eta_{p_!X}^{-1}}{\longrightarrow}& p_! X
}
and
p * S ⟶ η p * S p ! p * p * S p * ϵ S − 1 ↓ ↘ ϕ X ↓ p ! ( η S − 1 ) p * p * p ! S ⟶ ϵ p ! S p ! S .
\array{
p^* S &\stackrel{\eta_{p^* S}}{\longrightarrow}& p^! p_* p^* S
\\
{}^{\mathllap{p^* \epsilon_S^{-1}}}\downarrow
&\searrow^{\mathrlap{\phi_X}}& \downarrow^{\mathrlap{p^!(\eta_S^{-1})}}
\\
p^* p_* p^!S &\stackrel{{\epsilon}_{p_!S }}{\longrightarrow}& p^!S
}
\,.
where the diagonal morphisms
θ X : p * X → p ! X
\theta_X : p_* X \to p_! X
and
ϕ S : p * S → p ! S
\phi_S : p^* S \to p^! S
are defined to be the equal composites of the sides of these diagrams.
This appears as (Johnstone 11, lemma 2.1, corollary 2.2 ).
Proposition 2.2 . The following conditions are equivalent:
for all X ∈ ℰ X \in \mathcal{E} the morphism θ X : p * X → p ! X \theta_X : p_*X \to p_! X is an epimorphism ;
for all S ∈ 𝒮 S \in \mathcal{S} ,, the morphism ϕ S : p * S → p ! S \phi_S : p^*S \to p^! S is a monomorphism ;
p * p_* is faithful on morphisms of the form A → p * S A \to p^* S .
This appears as (Johnstone 11, lemma 2.3 ).
Proof . By the above definition, ϕ S \phi_S is a monomorphism precisely if η p * S : p * S → p ! p * p * S \eta_{p^* S} : p^* S \to p^! p_* p^* S is. This in turn is so (see monomorphism ) precisely if the first function in
ℰ ( A , p * X ) ⟶ ( η p * X ) ∘ ( − ) ℰ ( A , p ! p * p * S ) ⟶ ≃ 𝒮 ( p * A , p * p * S )
\mathcal{E}(A,p^* X)
\stackrel{(\eta_{p^* X}) \circ (-)}{\longrightarrow}
\mathcal{E}(A, p^! p_* p^* S)
\stackrel{\simeq}{\longrightarrow}
\mathcal{S}(p_* A, p_* p^* S)
and hence the composite is a monomorphism in Set .
By definition of adjunct and using the ( p * ⊣ p ! ) (p_* \dashv p^!) -zig-zag identity , this is equal to the action of p * p_* on morphisms
( η p * X ) ∘ ( − ) : ( A → p * S ) ↦ p * ( A → p * S ) .
(\eta_{p^* X}) \circ (-) :
(A \to p^* S) \mapsto p_*(A \to p^* S)
\,.
Similarly, by the above definition the morphism θ X \theta_X is an epimorphism precisely if p ! ( ϵ X ) : p ! p * p * X → p ! X p_!(\epsilon_X) : p_! p^* p_* X \to p_! X is so, which is the case precisely if the top morphism in
𝒮 ( p ! X , S ) ⟶ ( − ) ∘ p ! ( ϵ X ) 𝒮 ( p ! p * p * X , S ) ≃ ↓ ↓ ≃ ℰ ( p * p * X , p * S ) ≃ ↓ ↓ ≃ ℰ ( X , p * S ) ⟶ p * 𝒮 ( p * X , p * p * S )
\array{
\mathcal{S}(p_! X, S)
&\stackrel{(-) \circ p_!(\epsilon_X)}{\longrightarrow} &
\mathcal{S}(p_! p^* p_* X, S)
\\
{}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}}
\\
&& \mathcal{E}(p^* p_* X, p^* S)
\\
{}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}}
\\
\mathcal{E}(X, p^* S) &\stackrel{p_*}{\longrightarrow}& \mathcal{S}(p_* X, p_* p^* S)
}
and hence the bottom morphism is a monomorphism in Set , where again the commutativity of this diagram follows from the definition of adjunct and the ( p ! ⊣ p * ) (p_! \dashv p^*) -zig-zag identity . ▮
\,
3. Examples
Via Kan extension of adjoint pairs
A rich source of adjoint quadruples arises form adjoint pairs between small categories by left/right Kan extension to their categories of presheaves .
More interesting examples of adjoint quadruples tend to arise from these presheaf constructions when the quadruple (co )restricts to sub-categories of sheaves .
We spell out two proofs of this fact, the first using coend -calculus in the generality of enriched category theory , the second using more elementary colimit -notation.
Proposition 3.1 . (Kan extension of adjoint pair is adjoint quadruple ) For 𝒱 \mathcal{V} a symmetric closed monoidal category with all limits and colimits , let 𝒞 \mathcal{C} , 𝒟 \mathcal{D} be two small 𝒱 \mathcal{V} -enriched categories and let
𝒞 ⊥ ⟶ p ⟵ q 𝒟
\mathcal{C}
\underoverset
{\underset{p}{\longrightarrow}}
{\overset{q}{\longleftarrow}}
{\bot}
\mathcal{D}
be a 𝒱 \mathcal{V} -enriched adjunction . Then there are 𝒱 \mathcal{V} -enriched natural isomorphisms
( q op ) * ≃ Lan p op : [ 𝒞 op , 𝒱 ] ⟶ [ 𝒟 op , 𝒱 ]
(q^{op})^\ast \;\simeq\; Lan_{p^{op}}
\;\colon\;
[\mathcal{C}^{op},\mathcal{V}]
\longrightarrow
[\mathcal{D}^{op},\mathcal{V}]
( p op ) * ≃ Ran q op : [ 𝒟 op , 𝒱 ] ⟶ [ 𝒞 op , 𝒱 ]
(p^{op})^\ast \;\simeq\; Ran_{q^{op}}
\;\colon\;
[\mathcal{D}^{op},\mathcal{V}]
\longrightarrow
[\mathcal{C}^{op},\mathcal{V}]
between the precomposition on enriched presheaves with one functor and the left/right Kan extension of the other.
By essential uniqueness of adjoint functors (this Prop. ), this means that the two Kan extension adjoint triples of q q and p p
Lan q op ⊣ ( q op ) * ⊣ Ran q op Lan p op ⊣ ( p op ) * ⊣ Ran p op
\array{
Lan_{q^{op}} &\dashv& (q^{op})^\ast &\dashv& Ran_{q^{op}}
\\
&& Lan_{p^{op}} &\dashv& (p^{op})^\ast &\dashv& Ran_{p^{op}}
}
merge into an adjoint quadruple
Lan q op ⊣ ( q op ) * ⊣ ( p op ) * ⊣ Ran p op : [ 𝒞 op , 𝒱 ] ↔ [ 𝒟 op , 𝒱 ]
\array{
Lan_{q^{op}} &\dashv& (q^{op})^\ast &\dashv& (p^{op})^\ast &\dashv& Ran_{p^{op}}
}
\;\colon\;
[\mathcal{C}^{op},\mathcal{V}]
\leftrightarrow
[\mathcal{D}^{op}, \mathcal{V}]
Proof . For every enriched presheaf F : 𝒞 op → 𝒱 F \;\colon\; \mathcal{C}^{op} \to \mathcal{V} we have a sequence of 𝒱 \mathcal{V} -enriched natural isomorphism as follows
( Lan p op F ) ( d ) ≃ ∫ c ∈ 𝒞 𝒟 ( d , p ( c ) ) ⊗ F ( c ) ≃ ∫ c ∈ 𝒞 𝒞 ( q ( d ) , c ) ⊗ F ( c ) ≃ F ( q ( d ) ) = ( ( q op ) * F ) ( d ) .
\begin{aligned}
(Lan_{p^{op}} F)(d)
& \simeq
\int^{ c \in \mathcal{C} } \mathcal{D}(d,p(c)) \otimes F(c)
\\
& \simeq
\int^{ c \in \mathcal{C} } \mathcal{C}(q(d),c) \otimes F(c)
\\
& \simeq
F(q(d))
\\
& = \left( (q^{op})^\ast F\right) (d)
\,.
\end{aligned}
Here the first step is the coend -formula for left Kan extension (here ), the second step is the enriched adjunction -isomorphism for q ⊣ p q \dashv p and the third step is the co-Yoneda lemma .
This shows the first statement. By essential uniqueness of adjoints (this Prop. ), the other statements follow. ▮
The following is the same argument without using coend-calculus. This argument applies verbatim also, for instance, in
∞
\infty
-category theory using results from standard sources:
Proof .
We already know that each functor f f by itself induces an adjoint triple f ! ⊣ f * ⊣ f * f_! \dashv f^\ast \dashv f_\ast , by Kan extension . Due to essential uniqueness of adjoints (this Prop. ) it is hence sufficient to show that these two adjoint triples “overlap”, in that (ℓ * ≃ r ! \ell^\ast \simeq r_! and equivalently) ℓ * ≃ r * \ell_\ast \simeq r^\ast , hence equivalently that ℓ * ⊣ r * \ell^\ast \dashv r^\ast .
Now the hom-isomorphism which is characteristic of the latter adjunction ℓ * ⊣ r * \ell^\ast \dashv r^\ast may be obtained as the following sequence of natural bijections :
PSh ( 𝒮 1 ) ( X 1 , r * ( X 2 ) ) ≃ PSh ( 𝒮 1 ) ( lim ⟶ s 1 → X 1 y ( s 1 ) , r * ( lim ⟶ s 2 → X 2 y ( s 2 ) ) ) ≃ lim ⟵ s 1 → X 1 PSh ( 𝒮 1 ) ( y ( s 1 ) , lim ⟶ s 2 → X 2 r * ( y ( s 2 ) ) ) ≃ lim ⟵ s 1 → X 1 lim ⟶ s 2 → X 2 PSh ( 𝒮 1 ) ( y ( s 1 ) , r * ( y ( s 2 ) ) ) ≃ lim ⟵ s 1 → X 1 lim ⟶ s 2 → X 2 𝒮 2 ( r ( s 1 ) , s 2 ) ≃ lim ⟵ s 1 → X 1 lim ⟶ s 2 → X 2 PSh ( 𝒮 2 ) ( y ( r ( s 1 ) ) , y ( s 2 ) ) ≃ lim ⟵ s 1 → X 1 PSh ( 𝒮 2 ) ( y ( r ( s 1 ) ) , lim ⟶ s 2 → X 2 y ( s 2 ) ) ≃ PSh ( 𝒮 2 ) ( lim ⟶ s 1 → X 1 y ( r ( s 1 ) ) , lim ⟶ s 2 → X 2 y ( s 2 ) ) ≃ PSh ( 𝒮 2 ) ( lim ⟶ s 1 → X 1 𝒮 2 ( ( − ) , r ( s 1 ) ) , lim ⟶ s 2 → X 2 y ( s 2 ) ) ≃ PSh ( 𝒮 2 ) ( lim ⟶ s 1 → X 1 𝒮 2 ( ℓ ( − ) , s 1 ) , lim ⟶ s 2 → X 2 y ( s 2 ) ) ≃ PSh ( 𝒮 2 ) ( lim ⟶ s 1 → X 1 ℓ * ( y ( s 1 ) ) , lim ⟶ s 2 → X 2 y ( s 2 ) ) ≃ PSh ( 𝒮 2 ) ( ℓ * ( lim ⟶ s 1 → X 1 y ( s 1 ) ) , lim ⟶ s 2 → X 2 y ( s 2 ) ) ≃ PSh ( 𝒮 2 ) ( ℓ * ( X 1 ) , X 2 )
\begin{aligned}
&
\mathrm{PSh}(\mathcal{S}_1)
\big(
X_1
,\,
r^\ast(X_2)
\big)
\\
&
\;\simeq\;
\mathrm{PSh}(\mathcal{S}_1)
\Big(
\underset{
\underset{
s_1 \to X_1
}{\longrightarrow}
}{\lim}
\,
y(s_1)
\,
,\,
r^\ast
\big(
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
\,
y(s_2)
\big)
\Big)
\\
&
\;\simeq\;
\underset{
\underset{
s_1 \to X_1
}{\longleftarrow}
}{\lim}
\mathrm{PSh}(\mathcal{S}_1)
\Big(
y(s_1)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
\,
r^\ast
\big(
y(s_2)
\big)
\Big)
\\
&
\;\simeq\;
\underset{
\underset{
s_1 \to X_1
}{\longleftarrow}
}{\lim}
\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
\mathrm{PSh}(\mathcal{S}_1)
\Big(
y(s_1)
,\,
r^\ast
\big(
y(s_2)
\big)
\Big)
\\
& \;\simeq\;
\underset{
\underset{
s_1 \to X_1
}{\longleftarrow}
}{\lim}
\;
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
\mathcal{S}_2
\big(
r(s_1)
,\,
s_2
\big)
\\
& \;\simeq\;
\underset{
\underset{
s_1 \to X_1
}{\longleftarrow}
}{\lim}
\;
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
\mathrm{PSh}(\mathcal{S}_2)
\Big(
y\big(r(s_1)\big)
,\,
y(s_2)
\Big)
\\
& \;\simeq\;
\underset{
\underset{
s_1 \to X_1
}{\longleftarrow}
}{\lim}
\mathrm{PSh}(\mathcal{S}_2)
\Big(
y\big(r(s_1)\big)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
y(s_2)
\Big)
\\
& \;\simeq\;
\mathrm{PSh}(\mathcal{S}_2)
\Big(
\underset{
\underset{
s_1 \to X_1
}{\longrightarrow}
}{\lim}
y\big(r(s_1)\big)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
y(s_2)
\Big)
\\
& \;\simeq\;
\mathrm{PSh}(\mathcal{S}_2)
\Big(
\underset{
\underset{
s_1 \to X_1
}{\longrightarrow}
}{\lim}
\mathcal{S}_2
\big(
(-)
,\,
r(s_1)
\big)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
y(s_2)
\Big)
\\
& \;\simeq\;
\mathrm{PSh}(\mathcal{S}_2)
\Big(
\underset{
\underset{
s_1 \to X_1
}{\longrightarrow}
}{\lim}
\mathcal{S}_2
\big(
\ell(-)
,\,
s_1
\big)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
y(s_2)
\Big)
\\
& \;\simeq\;
PSh(\mathcal{S}_2)
\Big(
\underset{
\underset{
s_1 \to X_1
}{\longrightarrow}
}{\lim}
\ell^\ast
\big(
y(s_1)
\big)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
y(s_2)
\Big)
\\
& \;\simeq\;
PSh(\mathcal{S}_2)
\Big(
\ell^\ast
\big(
\underset{
\underset{
s_1 \to X_1
}{\longrightarrow}
}{\lim}
y(s_1)
\big)
,\,
\underset{
\underset{
s_2 \to X_2
}{\longrightarrow}
}{\lim}
y(s_2)
\Big)
\\
& \;\simeq\;
PSh(\mathcal{S}_2)
\Big(
\ell^\ast
(
X_1
)
,\,
X_2
\Big)
\end{aligned}
Here we used repeatedly
the co-Yoneda lemma in the form
X ≃ lim ⟶ y ( s ) → X y ( s ) ,
X
\;\simeq\;
\underset{
\underset{y(s) \to X}{\longrightarrow}
}{\lim}
\,y(s)
\,,
expressing a presheaf X ∈ PSh ( S ) X \,\in\, PSh(S) as a colimit of representable functors y ( s ) y(s) (the colimit is over the comma category y ↓ X y \downarrow X , but that does not even matter in the proof above),
the fact that any hom-functor sends colimits in its first argument to limits ,
the strong Yoneda lemma which says that PSh ( 𝒮 ) ( y ( s ) , X ) ≃ X ( s ) PSh(\mathcal{S})\big(y(s), X\big) \,\simeq\, X(s) ,
the fact that colimits of presheaves are computed objectwise .
As before, the adjunction ℓ * ⊣ r ! \ell^\ast \dashv r_! implies the overlapping adjoint triples by essential uniqueness of adjoint functors (this Prop. ). ▮
Cohesion
Proof . The preservation of finite products by the leftmost adjoint follows by Prop. 3.10 below.
The fully faithfulness of i ! i_! follows by Prop. 3.11 below. This implies that also i * i_\ast is fully faithful, by this Prop. . ▮
The proof of Prop. 3.3 as spelled out below applies verbatim also in
∞
\infty
-category theory . Here, it has interesting examples even without passage to
∞
\infty
-sheaves , when the
∞
\infty
-sites are higher than 1-sites :
This example is a special case of the following general class:
We now spell out the proof of the lemmas used in the proof of Prop. 3.3 .
Lemma 3.7 . Given a functor 𝒮 1 → f 𝒮 2 \mathcal{S}_1 \xrightarrow{\;f\;} \mathcal{S}_2 between small categories , its left Kan extension f ! : PSh ( 𝒮 1 ) → PSh ( 𝒮 1 ) f_! \;\colon\; PSh(\mathcal{S}_1) \xrightarrow{\;\;} PSh(\mathcal{S}_1) restricts to f f on representables , in that for s 1 ∈ 𝒮 1 s_1 \,\in\, \mathcal{S}_1 we have a natural isomorphism
f ! ( y ( s 1 ) ) ≃ y ( f ( s 1 ) ) .
f_!\big( y(s_1) \big)
\;\simeq\;
y\big(
f(s_1)
\big)
\,.
Proof . For X ∈ PSh ( 𝒮 2 ) X \,\in\, PSh(\mathcal{S}_2) we have the following sequence of natural isomorphism :
PSh ( 𝒮 2 ) ( f ! ( y ( s 1 ) ) , X ) ≃ PSh ( 𝒮 1 ) ( y ( s 1 ) , f * ( X ) ) ≃ X ( f ( s 1 ) ) ≃ PSh ( 𝒮 2 ) ( y ( f ( s 1 ) ) , X ) .
\begin{aligned}
PSh(\mathcal{S}_2)
\left(
f_!
\left(
y(s_1)
\right)
,\,
X
\right)
& \;\simeq\;
PSh(\mathcal{S}_1)
\left(
y(s_1)
,\,
f^\ast(X)
\right)
\\
&
\;\simeq\;
X\left( f(s_1) \right)
\\
&
\;\simeq\;
PSh(\mathcal{S}_2)
\left(
y\left(f(s_1)\right)
,\,
X
\right)
\,.
\end{aligned}
The first line is the defining adjointness of f ! f_! , the second line the Yoneda lemma over 𝒮 1 \mathcal{S}_1 and the definition of f * f^\ast , while the last line is the Yoneda lemma over 𝒮 2 \mathcal{S}_2 .
Since the composite of these isomorphisms is natural, the Yoneda lemma over PSh ( 𝒮 2 ) op PSh(\mathcal{S}_2)^{op} (which is large but locally small , so that the lemma does apply) implies the claim. ▮
Lemma 3.8 . Let 𝒮 1 \mathcal{S}_1 and 𝒮 2 \mathcal{S}_2 be small categories with binary products and 𝒮 1 → f 𝒮 2 \mathcal{S}_1 \xrightarrow{\;f\;} \mathcal{S}_2 a functor which preserves these, in that for s , s ′ ∈ 𝒮 1 s, s' \,\in\, \mathcal{S}_1 there is a natural isomorphism f ( s × s ′ ) ≃ f ( X 1 ) × f ( X 2 ) f(s \times s') \,\simeq\, f(X_1) \times f(X_2) . Then also the left Kan extension f ! f_! preserves binary products , in that for X , X ′ ∈ PSh ( 𝒮 1 ) X, X' \,\in\, PSh(\mathcal{S}_1) there is a natural isomorphism
f ! ( X × X ′ ) ≃ f ! ( X ) × f ! ( X ′ ) .
f_!(X \times X')
\;\simeq\;
f_!(X) \times f_!(X')
\,.
Proof . This is the composite of the following sequence of natural isomorphisms :
f ! ( X × X ′ ) ≃ f ! ( ( lim ⟶ s → X y ( s ) ) × ( lim ⟶ s ′ → X y ( s ′ ) ) ) ≃ f ! ( lim ⟶ s → X lim ⟶ s ′ → X ( y ( s ) × y ( s ′ ) ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X f ! ( y ( s ) × y ( s ′ ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X f ! ( y ( s × s ′ ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X y ( f ( s × s ′ ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X y ( f ( s ) × f ( s ′ ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X y ( f ( s ) ) × y ( f ( s ′ ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X f ! ( y ( s ) ) × f ! ( y ( s ′ ) ) ≃ ( lim ⟶ s → X f ! ( y ( s ) ) ) × ( lim ⟶ s ′ → X f ! ( y ( s ′ ) ) ) .
\begin{aligned}
f_!(X \times X')
& \;\simeq\;
f_!
\Big(\!
\big(
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\,
y(s)
\big)
\times
\big(
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
y(s')
\big)
\!\Big)
\\
& \;\simeq\;
f_!
\Big(
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
\left(
y(s)
\times
y(s')
\right)
\!\!\Big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\big(
y(s)
\times
y(s')
\big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\big(
y(s \times s')
\big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
y\big( f(s \times s') \big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
y\big( f(s) \times f(s') \big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
y\big( f(s) \big)
\times
y\big(f(s') \big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\left(
y(s)
\right)
\times
f_!
\left(
y(s')
\right)
\\
& \;\simeq\;
\Big(\,
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\,
f_!
\left(
y(s)
\right)
\!\!\Big)
\times
\Big(\,
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\left(
y(s')
\right)
\!\!\Big).
\end{aligned}
Here
▮
The following Lem. 3.9 is an immediate variant of Lem. 3.8 obtained by relaxing the assumptions slightly to a form that is often still readily checked:
Lemma 3.9 . Let
be a functor between small categories such that
their free coproduct completions PSh ⊔ ( − ) PSh_{\sqcup}(-) have binary products ,
the unique coproduct-preserving extension f ! f_! of f f to these completions preserves binary products , in that for s , s ′ ∈ , 𝒮 1 s, s' \,\in, \mathcal{S}_1 there is a natural isomorphism :
f ! ( y ( s ) × y ( s ′ ) ) ≃ f ! ( y ( s ) ) × f ! ( y ( s ′ ) )
f_!\big( y(s) \times y(s') \big)
\,\simeq\,
f_!\big(y(s)\big) \times f_!\big( y(s') \big)
Then also the left Kan extension f ! : PSh ( 𝒮 1 ) → PSh ( 𝒮 2 ) f_! \,\colon\, PSh(\mathcal{S}_1) \xrightarrow{\;} PSh(\mathcal{S}_2) to the full categories of presheaves preserves products.
Proof . The proof starts and ends as the proof of Prop. 3.8 , but the main step in between is now more immediate, as it just needs to invoke the assumption:
f ! ( X × X ′ ) ≃ f ! ( ( lim ⟶ s → X y ( s ) ) × ( lim ⟶ s ′ → X y ( s ′ ) ) ) ≃ f ! ( lim ⟶ s → X lim ⟶ s ′ → X ( y ( s ) × y ( s ′ ) ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X f ! ( y ( s ) × y ( s ′ ) ) ≃ lim ⟶ s → X lim ⟶ s ′ → X f ! ( y ( s ) ) × f ! ( y ( s ′ ) ) ≃ ( lim ⟶ s → X f ! ( y ( s ) ) ) × ( lim ⟶ s ′ → X f ! ( y ( s ′ ) ) ) .
\begin{aligned}
f_!(X \times X')
& \;\simeq\;
f_!
\Big(\!
\big(
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\,
y(s)
\big)
\times
\big(
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
y(s')
\big)
\!\Big)
\\
& \;\simeq\;
f_!
\Big(
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
\left(
y(s)
\times
y(s')
\right)
\!\!\Big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\big(
y(s)
\times
y(s')
\big)
\\
& \;\simeq\;
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\;
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\left(
y(s)
\right)
\times
f_!
\left(
y(s')
\right)
\\
& \;\simeq\;
\Big(\,
\underset{
\underset{ s \to X}{\longrightarrow}
}{\lim}
\,
f_!
\left(
y(s)
\right)
\!\!\Big)
\times
\Big(\,
\underset{
\underset{ s' \to X}{\longrightarrow}
}{\lim}
\,
f_!
\left(
y(s')
\right)
\!\!\Big).
\end{aligned}
▮
In conclusion so far:
Proof . We need to show that f ! f_! preserves (1) the terminal object and (2) binary products . With the given assumption on f f , the first follows with Lem. 3.7 while the second follows with Lem. 3.8 or Lem. 3.9 , respectively. ▮
Proof . We need to show for X , X ′ ∈ PSh ( 𝒮 2 ) X, X' \,\in\, PSh(\mathcal{S}_2) the morphism
PSh ( 𝒮 2 ) ( X , X ′ ) → ( i ! ) X , X ′ PSh ( 𝒮 ` ) ( i ! ( X ) , i ! ( X ′ ) )
PSh(\mathcal{S}_2)
(X,\, X')
\xrightarrow{ \; (i_!)_{X, X'} \; }
PSh(\mathcal{S}_`)
\big(
i_!(X)
,\,
i_!( X')
\big)
is an equivalence. But since i ! i_! is a left adjoint and since X X and X ′ X' are colimits of representables, this morphism is the unique one which reduces to
(1) 𝒮 2 ( s , s ′ ) → i s , s ′ 𝒮 1 ( i ( s ) , i ( s ′ ) )
\mathcal{S}_2
(s,\, s')
\xrightarrow{ \; i_{s, s'} \; }
\mathcal{S}_1
\big(
i(s)
,\,
i( s')
\big)
on representables, where this is an isomorphism by the assumption that i i is fully faithful. If follows that ( i ! ) X , X ′ (i_!)_{X, X'} , is the compostite of the following isomorphisms, and hence an isomorphism:
PSh ( 𝒮 1 ) ( i ! ( X 1 ) , i ! ( X 2 ) ) ≃ PSh ( 𝒮 1 ) ( i ! ( lim ⟶ s → X y ( s ) ) , i ! ( lim ⟶ s ′ → X ′ y ( s ′ ) ) ) ≃ PSh ( 𝒮 1 ) ( lim ⟶ s → X i ! ( y ( s ) ) , lim ⟶ s ′ → X ′ i ! ( y ( s ′ ) ) ) ≃ PSh ( 𝒮 1 ) ( lim ⟶ s → X y ( i ( s ) ) , lim ⟶ s ′ → X ′ y ( i ( s ′ ) ) ) ≃ lim lim ⟶ s ′ → X ′ PSh ( 𝒮 1 ) ( y ( i ( s ) ) , y ( i ( s ′ ) ) ) ≃ lim ⟵ s → X lim ⟶ s ′ → X ′ 𝒮 1 ( i ( s ) , i ( s ′ ) ) ≃ lim ⟵ s → X lim ⟶ s ′ → X ′ 𝒮 2 ( s , s ′ ) ≃ lim ⟵ s → X lim ⟶ s ′ → X ′ PSh ( 𝒮 2 ) ( y ( s ) , y ( s ′ ) ) ≃ PSh ( 𝒮 2 ) ( lim ⟶ s → X y ( s ) , lim ⟶ s ′ → X ′ y ( s ′ ) ) ≃ PSh ( 𝒮 2 ) ( X , X ′ )
\begin{aligned}
&
PSh(\mathcal{S}_1)
\big(
i_!(X_1)
,\,
i_!(X_2)
\big)
\\
&
\;\simeq\;
PSh(\mathcal{S}_1)
\Big(
i_!
\big(
\underset{
\underset{s \to X}{\longrightarrow}
}{\lim}
y(s)
\big)
,\,
i_!
\big(
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
y(s')
\big)
\Big)
\\
&
\;\simeq\;
PSh(\mathcal{S}_1)
\Big(
\underset{
\underset{s \to X}{\longrightarrow}
}{\lim}
i_!
\big(
y(s)
\big)
,\,
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
i_!
\big(
y(s')
\big)
\Big)
\\
&
\;\simeq\;
PSh(\mathcal{S}_1)
\Big(
\underset{
\underset{s \to X}{\longrightarrow}
}{\lim}
y
\big(
i
(s)
\big)
,\,
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
y
\big(
i(s')
\big)
\Big)
\\
&
\;\simeq\;
\underset{
}{\lim}
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
PSh(\mathcal{S}_1)
\Big(
y
\big(
i
(s)
\big)
,\,
y
\big(
i(s')
\big)
\Big)
\\
&
\;\simeq\;
\underset{
\underset{s \to X}{\longleftarrow}
}{\lim}
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
\mathcal{S}_1
\big(
i(s)
,\,
i(s')
\big)
\\
&
\;\simeq\;
\underset{
\underset{s \to X}{\longleftarrow}
}{\lim}
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
\mathcal{S}_2
\big(
s
,\,
s'
\big)
\\
&
\;\simeq\;
\underset{
\underset{s \to X}{\longleftarrow}
}{\lim}
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
PSh(\mathcal{S}_2)
\big(
y(s)
,\,
y(s')
\big)
\\
&
\;\simeq\;
PSh(\mathcal{S}_2)
\Big(
\underset{
\underset{s \to X}{\longrightarrow}
}{\lim}
y(s)
,\,
\underset{
\underset{s' \to X'}{\longrightarrow}
}{\lim}
y(s')
\Big)
\\
&
\;\simeq\;
PSh(\mathcal{S}_2)
\big(
X
,\,
X'
\big)
\end{aligned}
Here the first and last steps are the co-Yoneda lemma and the preservation of its colimits as in the proofs before. In the middle steps we are using Lem. 3.7 to evaluate i ! i_! on representables and then (1) inside the (co)limits. ▮
5. References
The above prop. 2.1 is from:
Peter Johnstone , Remarks on punctual local connectedness , Theory and Applications of Categories, Vol. 25, 2011, No. 3, pp 51-63. (tac )