On linear representations of braid groups (see also at braid group statistics and interpretation as quantum gates in topological quantum computation):
Review:
Chen Ning Yang, M. L. Ge (eds.). Braid Group, Knot Theory and Statistical Mechanics, Advanced Series in Mathematical Physics 9, World Scientific (1991) doi:10.1142/0796
(focus on quantum Yang-Baxter equation)
Camilo Arias Abad: Introduction to representations of braid groups, Rev. colomb. mat. 49 1 (2015) [doi:10.15446/recolma.v49n1.54160, arXiv:1404.0724]
Toshitake Kohno, Introduction to representation theory of braid groups, Peking 2018 (pdf, pdf)
in relation to modular tensor categories:
Braid representations from the monodromy of the Knizhnik-Zamolodchikov connection on bundles of conformal blocks over configuration spaces of points:
Ivan Todorov, Ludmil Hadjiivanov, Monodromy Representations of the Braid Group, Phys. Atom. Nucl. 64 (2001) 2059-2068; Yad.Fiz. 64 (2001) 2149-2158 arXiv:hep-th/0012099, doi:10.1134/1.1432899
Ivan Marin, Sur les représentations de Krammer génériques, Annales de l’Institut Fourier, 57 6 (2007) 1883-1925 numdam:AIF_2007__57_6_1883_0
and understood in terms of anyon statistics:
Braid representations seen inside the topological K-theory of the braid group‘s classifying space:
Alejandro Adem, Daniel C. Cohen, Frederick R. Cohen, On representations and K-theory of the braid groups, Math. Ann. 326 (2003) 515-542 (arXiv:math/0110138, doi:10.1007/s00208-003-0435-8)
Frederick R. Cohen, Section 3 of: On braid groups, homotopy groups, and modular forms, in: J.M. Bryden (ed.), Advances in Topological Quantum Field Theory, Kluwer 2004, 275–288 (pdf)
See also:
As quantum gates for topological quantum computation with anyons:
Louis H. Kauffman, Samuel J. Lomonaco, Braiding Operators are Universal Quantum Gates, New Journal of Physics 6 (2004) [doi:10.1088/1367-2630/6/1/134, arXiv:quant-ph/0401090]
(via R-matrix solutions to the quantum Yang-Baxter equation)
Yong Zhang, Louis H. Kauffman, Mo-Lin Ge: Yang–Baxterizations, Universal Quantum Gates and Hamiltonians, Quantum Inf Process 4 (2005) 159–197 [doi:10.1007/s11128-005-7655-7]
(via R-matrix solutions to the quantum Yang-Baxter equation)
Samuel J. Lomonaco, Louis Kauffman, Topological Quantum Computing and the Jones Polynomial, Proc. SPIE 6244, Quantum Information and Computation IV, 62440Z (2006) (arXiv:quant-ph/0605004)
(braid group representation serving as a topological quantum gate to compute the Jones polynomial)
Louis H. Kauffman, Samuel J. Lomonaco, Topological quantum computing and braid group representations, Proceedings Volume 6976, Quantum Information and Computation VI; 69760M (2008) (doi:10.1117/12.778068, rg:228451452)
C.-L. Ho, A. I. Solomon, C.-H. Oh: Quantum entanglement, unitary braid representation and Temperley-Lieb algebra, EPL 92 (2010) 30002 [doi:10.1209/0295-5075/92/30002, arXiv:1011.6229]
Rebecca Chen: Generalized Yang-Baxter Equations and Braiding Quantum Gates, Journal of Knot Theory and Its Ramifications 21 09 (2012) 1250087 [arXiv:1108.5215, doi:10.1142/S0218216512500873]
Louis H. Kauffman, Majorana Fermions and Representations of the Braid Group, International Journal of Modern Physics A 33 23 (2018) 1830023 [doi:10.1142/S0217751X18300235, arXiv:1710.04650]
David Lovitz, Universal Braiding Quantum Gates [arXiv:2304.00710]
Introduction and review:
Colleen Delaney, Eric C. Rowell, Zhenghan Wang, Local unitary representations of the braid group and their applications to quantum computing, Revista Colombiana de Matemáticas(2017), 50 (2):211 (arXiv:1604.06429, doi:10.15446/recolma.v50n2.62211)
Eric C. Rowell, Braids, Motions and Topological Quantum Computing arXiv:2208.11762
Realization of Fibonacci anyons on quasicrystal-states:
Realization on supersymmetric spin chains:
Last revised on April 9, 2025 at 18:48:10. See the history of this page for a list of all contributions to it.