basics
Examples
(…)
The Brillouin zone of quasicrystals may be understood as having noncommutative topology/noncommutative geometry (Bellissard 03, Ypma 05, p. 8, Putnam 10).
For more see at noncommutative topology of quasiperiodicity.
Survey:
Christian Janot, The Properties and Applications of Quasicrystals, Europhysics News 27 (1996) (pdf)
Christian Janot, Quasicrystals – A Primer, Oxford Classic Texts in the Physical Sciences, Oxford University Press, 2012 (ISBN:978-0-19-965740-7)
See also
As or in relation to topological phases of matter:
Yao Wang et al., Quantum Topological Boundary States in Quasi-crystal, Adv Mater 2019 Dec;31(49):e1905624 (doi:10.1002/adma.201905624)
Dominic V. Else, Sheng-Jie Huang, Abhinav Prem, Andrey Gromov, Quantum many-body topology of quasicrystals (arXiv:2103.13393)
Oded Zilberberg, Topology in quasicrystals, Optical Materials Express Vol. 11, Issue 4, pp. 1143-1157 (2021) (doi:10.1364/OME.416552)
As a substrate for topological quantum computation:
Mathematical disucssion:
A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys., 169 (1995), p. 25-43.
J-B. Gouere, Quasicrystals and almost periodicity, Commun. Math. Phys., 255 (2005), p. 655-681.
Discussion of the noncommutative topology/KK-theory of the Brillouin zone in the spirit of the K-theory classification of topological phases of matter:
Jean Bellissard, The Noncommutative Geometry of Aperiodic Solids, in: Geometric and Topological Methods for Quantum Field Theory, pp. 86-156 (2003) (pdf, doi:10.1142/9789812705068_0002)
Fonger Ypma, Quasicrystals, -algebras and K-theory, 2005 (pdf)
Ian F. Putnam, Non-commutative methods for the K-theory of -algebras of aperiodic patterns from cut-and-project systems, Commun. Math. Phys. 294, 703–729 (2010) (pdf, doi:10.1007/s00220-009-0968-0)
Hervé Oyono-Oyonoa, Samuel Petite, -algebras of Penrose hyperbolic tilings, Journal of Geometry and Physics Volume 61, Issue 2, February 2011, Pages 400-424 (doi:10.1016/j.geomphys.2010.09.019)
For more see at noncommutative topology of quasiperiodicity.
Analysis of possible quasicrystal configurations:
via machine learning:
via topological data analysis:
Pavlo Solokha et al., New Quasicrystal Approximant in the Sc–Pd System: From Topological Data Mining to the Bench, Chem. Mater. 2020, 32, 3, 1064–1079 (doi:10.1021/acs.chemmater.9b03767)
Søren S. Sørensen, Revealing hidden medium-range order in amorphous materials using topological data analysis, Science Advances 09 Sep 2020: Vol. 6, no. 37, eabc2320 (doi:10.1126/sciadv.abc2320)
Discussion of asymptotic boundaries of hyperbolic tensor networks as conformal quasicrystals (see also at AdS/CFT in solid state physics):
Latham Boyle, Madeline Dickens, Felix Flicker, Conformal Quasicrystals and Holography, Phys. Rev. X 10, 011009 (2020) (arXiv:1805.02665)
Alexander Jahn, Zoltán Zimborás, Jens Eisert, Central charges of aperiodic holographic tensor network models, Phys. Rev. A 102, 042407 (arXiv:1911.03485)
(via Majorana dimer codes)
Last revised on September 11, 2022 at 16:11:18. See the history of this page for a list of all contributions to it.