A compact (i.e. closed) hyperkähler manifold.
The only known examples of compact hyperkähler manifolds are Hilbert schemes of points (for ) for either
a 4-torus (in which case the compact hyperkähler manifolds is really the fiber of )
(Beauville 83) and two exceptional examples (O’Grady 99, O’Grady 03 ), see Sawon 04, Sec. 5.3.
Both the Coulomb branch and the Higgs branch of D=3 N=4 super Yang-Mills theories are hyperkähler manifolds (Seiberg-Witten 96, see e.g. dBHOO 96). In special cases they are compact hyperkähler manifolds (Intriligator 99).
In order for Rozansky-Witten weight systems to take values in the ground field, hence to be actual weight systems, the hyperkähler manifold has to be compact (i.e. closed).
Arnaud Beauville, Variétés Kähleriennes dont la premiere classe de Chern est nulle, Jour.
Diff. Geom. 18 (1983), 755–782 (euclid.jdg/1214438181)
Kieran O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999), 49–117 (arXiv:alg-geom/9708009, arXiv:math/9805099)
Kieran O’Grady, A new six dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), 435-505 (arXiv:math/0010187)
Daniel Huybrechts, Compact Hyperkähler Manifolds, In: Ellingsrud G., Ranestad K., Olson L., Strømme S.A. (eds.) Calabi-Yau Manifolds and Related Geometries, Universitext. Springer, Berlin, Heidelberg 2003 (doi:10.1007/978-3-642-19004-9_3,
On D=3 N=4 super Yang-Mills theories with compact hyperkähler manifold Coulomb branches obtained by KK-compactification of little string theories:
With an eye towards Rozansky-Witten theory (ground field-valued Rozansky-Witten weight systems):
Justin Roberts, Simon Willerton, p. 17 of: On the Rozansky-Witten weight systems, Algebr. Geom. Topol. 10 (2010) 1455-1519 (arXiv:math/0602653)
Justin Sawon, Section 5.3 of: Rozansky-Witten invariants of hyperkähler manifolds, Cambridge 2000 (arXiv:math/0404360)
Last revised on January 2, 2020 at 12:32:45. See the history of this page for a list of all contributions to it.