nLab heterotic string phenomenology -- references

Heterotic string phenomenology

Heterotic string phenomenology

The historical origin of all string phenomenology is the top-down GUT-model building in heterotic string theory due to

Review and exposition:

The E 8×E 8E_8 \times E_8-heterotic string

The following articles claim the existence of exact realization of the gauge group and matter-content of the MSSM in heterotic string theory on orbifolds (not yet checking Yukawa couplings):

A computer search through the “landscape” of Calabi-Yau varieties showed severeal hundreds more such exact heterotic standard models (about one billionth of all CYs searched, and most of them arising as SU(5)-GUTs):

general computational theory:

using heterotic line bundle models:

The resulting database of heterotic line bundle models is here:

Review includes

Computation of metrics on these Calabi-Yau compactifications (eventually needed for computing their induced Yukawa couplings) is started in

and via machine learning:

This “heterotic standard model” has a “hidden sector” copy of the actual standard model, more details of which are discussed here:

The issue of moduli stabilization in these kinds of models is discussed in

Principles singling out heterotic models with three generations of fundamental particles are discussed in:

Discussion of non-supersymmetric: GUT models:

  • Alon E. Faraggi, Viktor G. Matyas, Benjamin Percival, Classification of Non-Supersymmetric Pati-Salam Heterotic String Models (arXiv:2011.04113)

See also:

The SemiSpin(32)SemiSpin(32)-heterotic string

Discussion of string phenomenology for the SemiSpin(32)-heterotic string (see also at type I phenomenology):

On heterotic line bundle models:

The “SO(16)×SO(16)SO(16)\times SO(16)”-heterotic string

This non-supersymmetric string theory was first described in:

A proposal on what the correct global character of the gauge group is appears in:

A suggestion that the SO(16)×SO(16)SO(16)\times SO(16) heterotic string is a the E 8×E 8E_8\times E_8 string “minus” the semispin group Spin ( 32 ) / 2 \text{Spin}(32)/\mathbb{Z}_2 :

Last revised on July 22, 2024 at 07:36:04. See the history of this page for a list of all contributions to it.