nLab R-parity

Contents

Context

Fields and quanta

fields and particles in particle physics

and in the standard model of particle physics:

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadrons (bound states of the above quarks)

solitons

in grand unified theory

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Algebraic Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Contents

Idea

In the plain minimally supersymmetric standard model (MSSM), baryon/lepton number would not need to be preserved. Since however experimental observation indicates that these quantum observables are preserved to high accuracy, a common ad hoc solution in bottom-up model-building is to impose a certain Z/2-action on the MSSM as a global symmetry, called R-parity, which does enforce baryon/lepton number conservation.

From a top-down model building-perspective there is the rough idea that R-parity may be thought of as a discrete remnant of R-symmetry (e.g. Chamseddine-Dreiner 96, p. 2, Frugiuele-Gregoire 11)

There remain speculations that even if MSSM-like models are realistic, R-parity might in fact be violated in nature after all, such as as possibly indicated by the apparent flavour anomalies (Wang-Yang-Yuan 19).

References

The original articles are

See also

Discussion of possible relation to R-symmetry:

  • Ali Chamseddine, Herbi Dreiner, Anomaly-Free Gauged R-Symmetry in Local Supersymmetry, Nucl.Phys. B458 (1996) 65-89 (arXiv:hep-ph/9504337)

  • Claudia Frugiuele, Thomas Gregoire, Making the Sneutrino a Higgs with a U(1) RU(1)_R Lepton Number, PhysRev D.85.015016 (arXiv:1107.4634)

In SemiSpin(32)-heterotic string phenomenology:

  • Saul Ramos-Sanchez, Section 5.4 of Towards Low Energy Physics from the Heterotic String, Fortsch. Phys. 10:907-1036, 2009 (arXiv:0812.3560)

Suggestion that the MSSM with R-parity violation could explain the flavour anomalies:

  • Dong-Yang Wang, Ya-Dong Yang, Xing-Bo Yuan, bcτν¯b \to c \tau \bar \nu decays in supersymmetry with R-parity violation (arXiv:1905.08784)

  • Quan-Yi Hu, Lin-Lin Huang, Explaining bs + b\to s \ell^+ \ell^- data by sneutrinos in the R-parity violating MSSM (arXiv:1912.03676)

  • Quan-Yi Hu, Ya-Dong Yang, Min-Di Zheng, Revisiting the B-physics anomalies in R-parity violating MSSM (arXiv:2002.09875)

  • Wolfgang Altmannshofer, P. S. Bhupal Dev, Amarjit Soni, Yicong Sui, Addressing R D *R_{D^\ast}, R K *R_{K^\ast}, muon g2g-2 and ANITA anomalies in a minimal R-parity violating supersymmetric framework (arXiv:2002.12910)

Last revised on March 2, 2020 at 10:55:41. See the history of this page for a list of all contributions to it.