An endomorphim $\rho$ is localized or localizable if there is a bounded open set $\mathcal{O} \in \mathcal{J}$ such that $\rho$ is the identity on the algebra of the causal complement $\mathcal{A}(\mathcal{O}^{\perp})$. Such an endomorphism is localized in $\mathcal{O}$.

Created on December 1, 2011 12:37:21
by Urs Schreiber
(134.76.83.9)