nLab 3x3 lemma

Redirected from "nine lemma".
Contents

Context

Diagram chasing lemmas

Homological algebra

homological algebra

(also nonabelian homological algebra)

Introduction

Context

Basic definitions

Stable homotopy theory notions

Constructions

Lemmas

diagram chasing

Schanuel's lemma

Homology theories

Theorems

Contents

Idea

The 3×33 \times 3-lemma or nine lemma is one of the basic diagram chasing lemmas in homological algebra.

Statement

Lemma

Let

0A B C 0 0 \to A_\bullet \to B_\bullet \to C_\bullet \to 0

be a short exact sequence of chain complexes. Then if two of the three complexes A ,B ,C A_\bullet, B_\bullet, C_\bullet are exact, so is the remaining third.

Lemma

Let

0 0 0 0 A B C 0 0 A B C 0 0 A B C 0 0 0 0 \array{ && 0 && 0 && 0 && \\ && \downarrow && \downarrow && \downarrow && \\ 0 &\to& A' &\to& B' &\to& C' &\to& 0 \\ && \downarrow && \downarrow && \downarrow && \\ 0 &\to& A &\to& B &\to& C &\to& 0 \\ && \downarrow && \downarrow && \downarrow && \\ 0 &\to& A'' &\to& B'' &\to& C'' &\to& 0 \\ && \downarrow && \downarrow && \downarrow && \\ && 0 && 0 && 0 && }

be a commuting diagram in some abelian category such that each of the three columns is an exact sequence. Then

  1. If the two bottom rows are exact, then so is the top.

  2. If the top two rows are exact, then so is the bottom.

  3. If the top and bottom rows are exact and ACA \to C is the zero morphism, then also the middle row is exact.

A proof by way of the salamander lemma is spelled out in detail at Salamander lemma - Implications - 3x3 lemma.

References

In abelian categories

An early appearance of the 3×33 \times 3-lemma is as lemma (5.5) in

  • D. A. Buchsbaum, Exact categories and duality, Transactions of the American Mathematical Society Vol. 80, No. 1 (1955), pp. 1-34 (JSTOR)

In

it appears as exercise 1.3.2.

The sharp 3×33 \times 3-lemma appears as lemma 2 in

Also lemma 3.2-3.4 of

  • Saunders MacLane, Homology, Grundlehren der math. Wissenshaften vol 114, Springer (1995)

In non-abelian categories

Discussion of generalization to non-abelian categories is in

  • Marino Gran, Diana Rodelo, Goursat categories and the 3×33 \times 3-lemma, Applied Categorical Structures, Vol. 20, No 3, 2012, 229-238. (journal, pdf slides)

  • Marino Gran, Zurab Janelidze and Diana Rodelo, 3×33 \times 3 lemma for star-exact sequences, Homology, Homotopy and Applications, Vol. 14 (2012), No. 2, pp.1-22. (journal)

  • Dominique Bourn, 3×33 \times 3-lemma and protomodularity, Journal of Algebra, Volume 236, Number 2, 15 February 2001 , pp. 778-795(18)

  • Dominique Bourn, The denormalized 3×33 \times 3 lemma, Journal of Pure and Applied Algebra, Volume 177, Issue 2, 24 January 2003, Pages 113-129, doi:10.1016/S0022-4049(02)00143-3

Last revised on August 4, 2019 at 11:36:18. See the history of this page for a list of all contributions to it.