nLab
ninebrane 10-group

Contents

Idea

The 10-group which is the looping of the homotopy fiber of (some fractional multiple of) the third Pontryagin class on the delooping of the fivebrane 6-group.

smooth ∞-groupWhitehead tower of smooth moduli ∞-stacksG-structure/higher spin structureobstruction
\vdots
\downarrow
ninebrane 10-groupBNinebrane\mathbf{B}Ninebrane ninebrane structurethird fractional Pontryagin class
\downarrow
fivebrane 6-groupBFivebrane1np 3B 11U(1)\mathbf{B}Fivebrane \stackrel{\tfrac{1}{n} p_3}{\to} \mathbf{B}^{11}U(1)fivebrane structuresecond fractional Pontryagin class
\downarrow
string 2-groupBString16p 2B 7U(1)\mathbf{B}String \stackrel{\tfrac{1}{6}\mathbf{p}_2}{\to} \mathbf{B}^7 U(1)string structurefirst fractional Pontryagin class
\downarrow
spin groupBSpin12p 1B 3U(1)\mathbf{B}Spin \stackrel{\tfrac{1}{2}\mathbf{p}_1}{\to} \mathbf{B}^3 U(1)spin structuresecond Stiefel-Whitney class
\downarrow
special orthogonal groupBSOw 2B 2 2\mathbf{B}SO \stackrel{\mathbf{w_2}}{\to} \mathbf{B}^2 \mathbb{Z}_2orientation structurefirst Stiefel-Whitney class
\downarrow
orthogonal groupBOw 1B 2\mathbf{B}O \stackrel{\mathbf{w}_1}{\to} \mathbf{B}\mathbb{Z}_2orthogonal structure/vielbein/Riemannian metric
\downarrow
general linear groupBGL\mathbf{B}GLsmooth manifold

(all hooks are homotopy fiber sequences)

References

Created on May 29, 2014 22:56:32 by Urs Schreiber (217.39.7.252)