# nLab spin group

Contents

## Spin geometry

spin geometry

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
$\vdots$$\vdots$
D8SO(16)Spin(16)SemiSpin(16)
$\vdots$$\vdots$
D16SO(32)Spin(32)SemiSpin(32)

string geometry

## Ninebrane geometry

#### Group Theory

group theory

Classical groups

Finite groups

Group schemes

Topological groups

Lie groups

Super-Lie groups

Higher groups

Cohomology and Extensions

Related concepts

#### Higher Lie theory

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

$\infty$-Lie groupoids

$\infty$-Lie groups

$\infty$-Lie algebroids

$\infty$-Lie algebras

# Contents

## Idea

The spin group $Spin(n)$ is the universal covering space of the special orthogonal group $SO(n)$. By the usual arguments it inherits a group structure for which the operations are smooth and so is a Lie group like $SO(n)$.

For special cases in low dimensions see at: Spin(2), Spin(3), Spin(4), Spin(5), Spin(6), Spin(7), Spin(8)

## Definition

###### Definition

A quadratic vector space $(V, \langle -,-\rangle)$ is a vector space $V$ over finite dimension over a field $k$ of characteristic 0, and equipped with a symmetric bilinear form $\langle -,-\rangle \colon V \otimes V \to k$.

Conventions as in (Varadarajan 04, section 5.3).

We write $q\colon v \mapsto \langle v ,v \rangle$ for the corresponding quadratic form.

###### Definition

The Clifford algebra $CL(V,q)$ of a quadratic vector space, def. , is the associative algebra over $k$ which is the quotient

$Cl(V,q) \coloneqq T(V)/I(V,q)$

of the tensor algebra of $V$ by the ideal generated by the elements $v \otimes v - q(v)$.

Since the tensor algebra $T(V)$ is naturally $\mathbb{Z}$-graded, the Clifford algebra $Cl(V,q)$ is naturally $\mathbb{Z}/2\mathbb{Z}$-graded.

Let $(\mathbb{R}^n, q = {\vert -\vert})$ be the $n$-dimensional Cartesian space with its canonical scalar product. Write $Cl^\mathbb{C}(\mathbb{R}^n)$ for the complexification of its Clifford algebra.

###### Proposition

There exists a unique complex representation

$Cl^{\mathbb{C}}(\mathbb{R}^n) \longrightarrow End(\Delta_n)$

of the algebra $Cl^\mathbb{C}(\mathbb{R}^n)$ of smallest dimension

$dim_{\mathbb{C}}(\Delta_n) = 2^{[n/2]} \,.$
###### Definition

The Pin group $Pin(V;q)$ of a quadratic vector space, def. , is the subgroup of the group of units in the Clifford algebra $Cl(V,q)$

$Pin(V,q) \hookrightarrow GL_1(Cl(V,q))$

on those elements which are multiples $v_1 \cdots v_{n}$ of elements $v_i \in V$ with $q(v_i) = 1$.

The Spin group $Spin(V,q)$ is the further subgroup of $Pin(V;q)$ on those elements which are even number multiples $v_1 \cdots v_{2k}$ of elements $v_i \in V$ with $q(v_i) = 1$.

Specifically, “the” Spin group is

$Spin(n) \coloneqq Spin(\mathbb{R}^n) \,.$

A spin representation is a linear representation of the spin group, def. .

## Properties

### General

By definition the spin group sits in a short exact sequence of groups

$\mathbb{Z}_2 \to Spin \to SO \,.$

### Relation to Whitehead tower of orthogonal group

The spin group is one element in the Whitehead tower of $O(n)$, which starts out like

$\cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,.$

The homotopy groups of $O(n)$ are for $k \in \mathbb{N}$ and for sufficiently large $n$

$\array{ \pi_{8k+0}(O) & = \mathbb{Z}_2 \\ \pi_{8k+1}(O) & = \mathbb{Z}_2 \\ \pi_{8k+2}(O) & = 0 \\ \pi_{8k+3}(O) & = \mathbb{Z} \\ \pi_{8k+4}(O) & = 0 \\ \pi_{8k+5}(O) & = 0 \\ \pi_{8k+6}(O) & = 0 \\ \pi_{8k+7}(O) & = \mathbb{Z} } \,.$

By co-killing these groups step by step one gets

$\array{ cokill\, this &&&& to\,get \\ \\ \pi_{0}(O) & = \mathbb{Z}_2 &&& SO \\ \pi_{1}(O) & = \mathbb{Z}_2 &&& Spin \\ \pi_{2}(O) & = 0 \\ \pi_{3}(O) & = \mathbb{Z} &&& String \\ \pi_{4}(O) & = 0 \\ \pi_{5}(O) & = 0 \\ \pi_{6}(O) & = 0 \\ \pi_{7}(O) & = \mathbb{Z} &&& Fivebrane } \,.$

Via the J-homomorphism this is related to the stable homotopy groups of spheres:

$n$012345678910111213141516
Whitehead tower of orthogonal grouporientationspin groupstring groupfivebrane groupninebrane group
higher versionsspecial orthogonal groupspin groupstring 2-groupfivebrane 6-groupninebrane 10-group
homotopy groups of stable orthogonal group$\pi_n(O)$$\mathbb{Z}_2$$\mathbb{Z}_2$0$\mathbb{Z}$000$\mathbb{Z}$$\mathbb{Z}_2$$\mathbb{Z}_2$0$\mathbb{Z}$000$\mathbb{Z}$$\mathbb{Z}_2$
stable homotopy groups of spheres$\pi_n(\mathbb{S})$$\mathbb{Z}$$\mathbb{Z}_2$$\mathbb{Z}_2$$\mathbb{Z}_{24}$00$\mathbb{Z}_2$$\mathbb{Z}_{240}$$\mathbb{Z}_2 \oplus \mathbb{Z}_2$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$\mathbb{Z}_6$$\mathbb{Z}_{504}$0$\mathbb{Z}_3$$\mathbb{Z}_2 \oplus \mathbb{Z}_2$$\mathbb{Z}_{480} \oplus \mathbb{Z}_2$$\mathbb{Z}_2 \oplus \mathbb{Z}_2$
image of J-homomorphism$im(\pi_n(J))$0$\mathbb{Z}_2$0$\mathbb{Z}_{24}$000$\mathbb{Z}_{240}$$\mathbb{Z}_2$$\mathbb{Z}_2$0$\mathbb{Z}_{504}$000$\mathbb{Z}_{480}$$\mathbb{Z}_2$

### Exceptional isomorphisms

In low dimensions the spin groups happens to be isomorphic to various other classical Lie groups. One speaks of exceptional isomorphisms or sporadic isomorphisms.

In the following $Sp(n)$ denotes the quaternionic unitary group in quaternionic dimension $n$.

We have

• in Euclidean signature

• $Spin(1) \simeq O(1)$

• Spin(2)$\simeq U(1) \simeq SO(2) \simeq S^1$ (SO(2), the circle group, see also at real Hopf fibration)

the projection $Spin(2)\to SO(2)$ corresponds to $S^1\stackrel{\cdot 2}{\longrightarrow} S^1$, see also at Theta characteristic

• Spin(3)$\simeq Sp(1) \simeq SU(2) \simeq S^3$ (the special unitary group SU(2)

the inclusion $Spin(2) \hookrightarrow Spin(3)$ corresponds to the canonical $S^1 \hookrightarrow S^3$ (see e.g. Gorbunov-Ray 92)

• Spin(4)$\simeq Sp(1)\times Sp(1) \simeq S^3 \times S^3$

this is given by identifying $\mathbb{R}^4 \simeq \mathbb{H}$ with the quaternions and $SU(2) \simeq S^3$ with the group of unit quternions. Then left and right quaternion multiplication gives a homomorphism

$SU(2) \times SU(2) \longrightarrow SO(4)$
$(g,h) \mapsto ( x \mapsto \; g^{-1} x h )$

which is a double cover and hence exhibits the isomorphism.

In particular therefore the inclusion $Spin(3) \hookrightarrow Spin(4)$ corresponds to the diagonal $S^3 \hookrightarrow S^3 \times S^3$.

At the level of Lie algebras $\mathfrak{so}(4) \simeq \wedge^2 \mathbb{R}^4$ and the $\pm 1$-eigenspaces of the Hodge star operator $\star \colon \Wedge^2 \mathbb{R}^4 \to \mathbb{R}^4$ gives the direct sum decomposition $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2) \simeq \mathfrak{so}(3) \oplus \mathfrak{so}(3)$

• Spin(5)$\simeq Sp(2)$ (an indirect consequence of triality, see e.g. Čadek-Vanžura 97)

• Spin(6)$\simeq SU(4)$ (the special unitary group SU(4))

• in Lorentzian signature

• $Spin(1,1) \simeq GL(1,\mathbb{R})$

• $Spin(2,1) \simeq SL(2, \mathbb{R})$ – 2d special linear group of real numbers

• $Spin(3,1) \simeq SL(2,\mathbb{C})$ – 2d special linear group of complex numbers

• $Spin(4,1) \simeq Sp(1,1)$

• $Spin(5,1) \simeq SL(2,\mathbb{H})$ – 2d special linear group of quaternions

• $Spin(9,1) \simeq_{in\;some\;sense} SL(2, \mathbb{O})$ – 2d special linear group of octonions (see SL(2,O) for more on this would-be isomorphism)

• in anti de Sitter signature

• $Spin(2,2) \simeq SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$

• $Spin(3,2) \simeq Sp(4,\mathbb{R})$

• $Spin(4,2) \simeq SU(2,2)$

• in mixed signature

• $Spin(3,3) \simeq SL(4,\mathbb{R})$ (Garrett 13 (2.12))

Beyond these dimensions there are still some interesting identifications, but the situation becomes much more involved.

exceptional spinors and real normed division algebras

Lorentzian
spacetime
dimension
$\phantom{AA}$spin groupnormed division algebra$\,\,$ brane scan entry
$3 = 2+1$$Spin(2,1) \simeq SL(2,\mathbb{R})$$\phantom{A}$ $\mathbb{R}$ the real numberssuper 1-brane in 3d
$4 = 3+1$$Spin(3,1) \simeq SL(2, \mathbb{C})$$\phantom{A}$ $\mathbb{C}$ the complex numberssuper 2-brane in 4d
$6 = 5+1$$Spin(5,1) \simeq$ SL(2,H)$\phantom{A}$ $\mathbb{H}$ the quaternionslittle string
$10 = 9+1$Spin(9,1) ${\simeq}$SL(2,O)$\phantom{A}$ $\mathbb{O}$ the octonionsheterotic/type II string

## Examples

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
$\vdots$$\vdots$
D8SO(16)Spin(16)SemiSpin(16)
$\vdots$$\vdots$
D16SO(32)Spin(32)SemiSpin(32)

## Applications

### In physics

The name arises due to the requirement that the structure group of the tangent bundle of spacetime lifts to $Spin(n)$ so as to ‘define particles with spin’… (Someone more awake and focused please put this into proper words!)

See spin structure.

The Whitehead tower of the orthogonal group looks like

$\cdots \to$ fivebrane group $\to$ string group $\to$ spin group $\to$ special orthogonal group $\to$ orthogonal group.

groupsymboluniversal coversymbolhigher coversymbol
orthogonal group$\mathrm{O}(n)$Pin group$Pin(n)$Tring group$Tring(n)$
special orthogonal group$SO(n)$Spin group$Spin(n)$String group$String(n)$
Lorentz group$\mathrm{O}(n,1)$$\,$$Spin(n,1)$$\,$$\,$
anti de Sitter group$\mathrm{O}(n,2)$$\,$$Spin(n,2)$$\,$$\,$
conformal group$\mathrm{O}(n+1,t+1)$$\,$
Narain group$O(n,n)$
Poincaré group$ISO(n,1)$Poincaré spin group$\widehat {ISO}(n,1)$$\,$$\,$
super Poincaré group$sISO(n,1)$$\,$$\,$$\,$$\,$
superconformal group

## References

Textbook accounts:

Examples of sporadic (exceptional) spin group isomorphisms incarnated as isogenies onto orthogonal groups are discussed in

The exceptional isomorphism Spin(5) $\simeq$ Sp(2) is discussed via triality in

• Martin Čadek, Jiří Vanžura, On $Sp(2)$ and $Sp(2) \cdot Sp(1)$-structures in 8-dimensional vector bundles, Publicacions Matemàtiques Vol. 41, No. 2 (1997), pp. 383-401 (jstor:43737249)

Discussion of the cohomology of the classifying space $B Spin$ includes

• E. Thomas, On the cohomology groups of the classifying space for the stable spinor groups, Bol. Soc. Mat. Mexicana (2) 7 (1962) 57-69.

• Harsh Pittie, The integral homology and cohomology rings of SO(n) and Spin(n), Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105–153 (doi:10.1016/0022-4049(91)90108-E)

Last revised on October 31, 2023 at 17:00:19. See the history of this page for a list of all contributions to it.