ninebrane group




The low degrees in the Whitehead tower of the orthogonal group are closely linked to the physics of branes appearing in string theory/M-theory. Accordingly the low stages are called

\cdots \to fivebrane group \to string group \to spin group \to special orthogonal group \to orthogonal group

To which extent and in which sense this matching with brane physics continues is not entirely clear. Hisham Sati gives arguments that co-killing the next integer homotopy group π 11(O)\pi_{11}(O) corresponds to the M9-brane. Therefore one might call the corresponding stage in the Whitehead tower the ninebrane group. This suggestion appeared in (Sati-Schreiber-Stasheff 08)

Whitehead tower of orthogonal grouporientationspinstringfivebraneninebrane
homotopy groups of stable orthogonal groupπ n(O)\pi_n(O) 2\mathbb{Z}_2 2\mathbb{Z}_20\mathbb{Z}000\mathbb{Z} 2\mathbb{Z}_2 2\mathbb{Z}_20\mathbb{Z}000\mathbb{Z} 2\mathbb{Z}_2
stable homotopy groups of spheresπ n(𝕊)\pi_n(\mathbb{S})\mathbb{Z} 2\mathbb{Z}_2 2\mathbb{Z}_2 24\mathbb{Z}_{24}00 2\mathbb{Z}_2 240\mathbb{Z}_{240} 2 2\mathbb{Z}_2 \oplus \mathbb{Z}_2 2 2 2\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 6\mathbb{Z}_6 504\mathbb{Z}_{504}0 3\mathbb{Z}_3 2 2\mathbb{Z}_2 \oplus \mathbb{Z}_2 480 2\mathbb{Z}_{480} \oplus \mathbb{Z}_2 2 2\mathbb{Z}_2 \oplus \mathbb{Z}_2
image of J-homomorphismim(π n(J))im(\pi_n(J))0 2\mathbb{Z}_20 24\mathbb{Z}_{24}000 240\mathbb{Z}_{240} 2\mathbb{Z}_2 2\mathbb{Z}_20 504\mathbb{Z}_{504}000 480\mathbb{Z}_{480} 2\mathbb{Z}_2


Created on November 13, 2013 at 00:36:16. See the history of this page for a list of all contributions to it.