nLab ordinary homology spectra split

Contents

Context

Cohomology

cohomology

Special and general types

Special notions

Variants

Extra structure

Operations

Theorems

Stable Homotopy theory

Higher algebra

Contents

Statement

For SS any spectrum and HAH A an Eilenberg-MacLane spectrum, then the smash product SHAS\wedge H A (the AA-ordinary homology spectrum) is non-canonically equivalent to a product of EM-spectra (hence a wedge sum of EM-spectra in the finite case).

(Adams 74, part II, lemma 6.1)

A variant for generalized (Eilenberg-Steenrod) cohomology:

Let XX be a topological space such that each of the ordinary homology groups H n(X,)H_n(X,\mathbb{Z}) is a free abelian group on genrators {h α,n} αB n\{h_{\alpha,n}\}_{\alpha \in B_n}. Write c α,nH n(X,)Hom(H n(X,),)c_{\alpha,n} \in H^n(X,\mathbb{Z}) \simeq Hom(H_n(X,\mathbb{Z}), \mathbb{Z}) for the corresponding dual basis.

Let EE be a multiplicative cohomology theory and write h n,α(τ 0E) n(X)h'_{n,\alpha} \in (\tau_{\leq 0} E)_n(X) and c n,aloha(τ 0E) n(X)c'_{n,\aloha} \in (\tau_{\leq 0} E)^n(X) for the images of these generators under the 0-truncated unit map

Hτ 0𝕊τ 0E. H \mathbb{Z} \simeq \tau_{\leq 0} \mathbb{S} \stackrel{}{\longrightarrow} \tau_{\leq 0} E \,.
Proposition

If one of the following conditions is satisfied

  • Each h n,αh'_{n,\alpha} lifts through E n(X)(τ 0E) n(X)E_n(X) \to (\tau_{\leq 0}E)_n(X);

  • each H n(X,)H_n(X,\mathbb{Z}) is finitely generated and each c n,αc'_{n,\alpha} lifts through E n(X)(τ 0E) n(X)E^n(X) \to (\tau_{\leq 0}E)^n(X),

then there are non-canonical equivalences as follows:

  1. EΣ X +n,αΣ nEEModE \wedge \Sigma^\infty X_+ \simeq \underset{n,\alpha}{\vee} \Sigma^n E \;\; \in E Mod ;

  2. [X,E]n,αΣ nE[X,E] \simeq \underset{n,\alpha}{\prod} \Sigma^{-n} E;

  3. E (X)π (E)H (X,)E_\bullet(X) \simeq \pi_\bullet(E) \otimes H_\bullet(X,\mathbb{Z})

    and

    E (X)Hom(H (X),π (E))E^\bullet(X)\simeq Hom(H_\bullet(X), \pi_\bullet(E))

(Lurie 10, lecture 4, prop. 7, Adams 74, part II, lemma 2.5)

References

Last revised on May 23, 2016 at 19:54:16. See the history of this page for a list of all contributions to it.