nLab ringed topos



Topos Theory

topos theory



Internal Logic

Topos morphisms

Extra stuff, structure, properties

Cohomology and homotopy

In higher category theory




Since a topos is a cartesian monoidal category, the notion of a unital ring and commutative unital ring can be defined internal to it.

A ringed topos (X,𝒪 X)(X,\mathcal{O}_{X}) is a topos XX equipped with a choice of ring object 𝒪\mathcal{O}. If XX is a sheaf topos over a site CC then 𝒪 X\mathcal{O}_X is a sheaf of rings on CC: a structure sheaf.

The notion of ringed topos makes sense for the theory of rings replaced by any Lawvere theory. Moreover, it makes sense for higher toposes such as (∞,1)-toposes. This is described at structured (∞,1)-topos.



A ringed topos (𝒳,𝒪 𝒳)(\mathcal{X}, \mathcal{O}_{\mathcal{X}}) is

  • a topos 𝒳\mathcal{X}

  • equipped with a distinguished unital ring object 𝒪 𝒳𝒳\mathcal{O}_{\mathcal{X}} \in \mathcal{X}: a ring internal to the topos.

If all stalks of 𝒪 𝒳\mathcal{O}_{\mathcal{X}} are local rings, (𝒳,𝒪 𝒳)(\mathcal{X}, \mathcal{O}_{\mathcal{X}}) is a called a locally ringed topos.

A morphism of ringed toposes (f,η):(𝒳,𝒪 𝒳)(𝒴,𝒪 𝒴)(f, \eta) : (\mathcal{X}, \mathcal{O}_{\mathcal{X}}) \to (\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) is

  • a geometric morphism

    (f *f *):𝒳𝒴 (f^* \dashv f_*) : \mathcal{X} \to \mathcal{Y}
  • and a morphism (“comorphism”) of ring objects in 𝒳\mathcal{X}

    η:f *𝒪 𝒴𝒪 𝒳 \eta \colon f^* \mathcal{O}_{\mathcal{Y}} \to \mathcal{O}_{\mathcal{X}}

    which is equivalently, by the (f *f *)(f^* \dashv f_*)-adjunction, a morphism of ring objects

    η˜:𝒪 𝒴f *𝒪 𝒳. \tilde \eta : \mathcal{O}_{\mathcal{Y}} \to f_* \mathcal{O}_{\mathcal{X}} \,.

The usual variants apply: we can speak of toposes equipped with, specifically, commutative ring objects, unital/nonunital ring objects, ring objects under other ring objects, hence associative algebra objects.


Let PSh((CRing fg) op)PSh((CRing^{fg})^{op}) be the classifying topos for the Lawvere theory of rings. Then

  • a ringed topos (𝒳,𝒪 𝒳)(\mathcal{X}, \mathcal{O}_{\mathcal{X}}) is a geometric morphism

    𝒪 𝒳:𝒳PSh((CRing fg) op), \mathcal{O}_{\mathcal{X}} : \mathcal{X} \to PSh((CRing^{fg})^{op}) \,,
  • a morphism (f,η):(𝒳,𝒪 𝒳)(𝒴,𝒪 𝒴)(f,\eta) : (\mathcal{X}, \mathcal{O}_{\mathcal{X}}) \to (\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) is a diagram

    𝒳 f *f * 𝒴 𝒪 𝒳 η 𝒪 𝒴 PSh((CRing fg) op) \array{ \mathcal{X} &&\stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}}&& \mathcal{Y} \\ & {}_{\mathllap{}}\searrow \nwarrow^{\mathrlap{\mathcal{O}_{\mathcal{X}}}} &\swArrow_{\eta}& \swarrow \nearrow_{\mathcal{O}_{\mathcal{Y}}} \\ && PSh((CRing^{fg})^{op}) }

    in the 2-category Topos.

So the 2-category of ringed toposes is the lax slice 2-category Topos/PSh((CRing fp) op)Topos/PSh((CRing^{fp})^{op}).

More generally:


For TT a Lawvere theory, a TT-ringed topos is a topos XX together with a product-preserving functor 𝒪 X:TX\mathcal{O}_X : T \to X.

See locally algebra-ed topos for more on this.

In order to say what locally TT-ringed means, one needs the extra structure of a geometry on TT. See there for details.



Limits and colimits


Let JRingedToposJ \to RingedTopos be a diagram of ringed toposes. Its limit exists and is given by

  • the limiting topos

    lim j(𝒳 j,𝒪 𝒳 j)p j(𝒳 j,𝒪 𝒳 j) {\lim_\leftarrow}_j (\mathcal{X}_j, \mathcal{O}_{\mathcal{X}_j}) \stackrel{p_j}{\to} (\mathcal{X}_j, \mathcal{O}_{\mathcal{X}_j})

    of the underlying diagram JRingedToposJ \to RingedTopos \stackrel{}{\to} Topos;

  • equipped with the colimiting ring object of all the inverse image rings

    lim jp j *𝒪 𝒳 jlim j𝒳 j. {\lim_\to}_j p_j^* \mathcal{O}_{\mathcal{X}_j} \in {\lim_\leftarrow}_j \mathcal{X}_j \,.

In more detail: let

(𝒴,𝒪 𝒴) f i ρ f j (𝒳 i,𝒪 𝒳 i) h ij (𝒳 j,𝒪 𝒳 j) \array{ && (\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) \\ & {}^{\mathllap{f_i}}\swarrow &{}^{\mathllap{\simeq}}\swArrow_{\rho}& \searrow^{\mathrlap{f^j}} \\ (\mathcal{X}_i, \mathcal{O}_{\mathcal{X}_i}) &&\underset{h_{i j}}{\to}&& (\mathcal{X}_j, \mathcal{O}_{\mathcal{X}_j}) }

be a cone in RingedToposRingedTopos, then this induces the cocone of ring objects in 𝒴\mathcal{Y}

f i *𝒪 𝒳 i f i *(h ij *𝒪 𝒳 j𝒪 𝒳 i) f j *h ij *𝒪 𝒳 j ρ 𝒪 𝒳 j f j *𝒪 𝒳 j 𝒪 𝒴 \array{ f_i^* \mathcal{O}_{\mathcal{X}_i} & \stackrel{f_i^*(h_{i j}^* \mathcal{O}_{\mathcal{X}_j} \to \mathcal{O}_{\mathcal{X}_i} )}{\leftarrow} & f_j^* h_{i j}^* \mathcal{O}_{\mathcal{X}_j} &\underoverset{\simeq}{\rho_{\mathcal{O}_{\mathcal{X}_j}}}{\leftarrow}& f_j^* \mathcal{O}_{\mathcal{X}_j} \\ & \searrow && \swarrow \\ && \mathcal{O}_{\mathcal{Y}} }

whose commutativity may be understood as being the 2-commutativity of the prism in Topos over the classifying topos PSh(CRing fg op)PSh(CRing_{fg}^{op}) with rear side faces η i\eta_i and η j\eta_j, with front face η ij\eta_{i j} (corresponding to h ijh_{i j}) and top face ρ\rho.


We check the universal property of the limit:

for (𝒴,𝒪 𝒴)f i(𝒳 i,𝒪 𝒳 i)(\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) \stackrel{f_i}{\to} (\mathcal{X}_i, \mathcal{O}_{\mathcal{X}_i}) any cone over the given diagram, we have by the definition of morphisms of ringed toposes:

  1. an essentially unique geometric morphism

    h:𝒴lim j(𝒳 j,𝒪 𝒳 j); h : \mathcal{Y} \to {\lim_\leftarrow}_j (\mathcal{X}_j, \mathcal{O}_{\mathcal{X}_j});
  2. a unique morphism of ring objects

    h *lim jp j *𝒪 𝒳 jlim jh *p j *𝒪 𝒳 j𝒪 𝒴 h^* {\lim_\to}_j p_j^* \mathcal{O}_{\mathcal{X}_j} \simeq {\lim_\to}_j h^* p_j^* \mathcal{O}_{\mathcal{X}_j} \to \mathcal{O}_{\mathcal{Y}}

    induced from the fact that the inverse image h *h^* preserves colimits and that the morphisms

    f j *𝒪 𝒳 j𝒪 𝒴 f_j^* \mathcal{O}_{\mathcal{X}_j} \to \mathcal{O}_{\mathcal{Y}}

    form a cocone under the diagram of ring objects f j *𝒪 𝒳 j𝒴f_j^* \mathcal{O}_{\mathcal{X}_j} \in \mathcal{Y}.


Original references:

See also:

The generalization to structured (infinity,1)-toposes is due to

See also references at ringed space, such as

Last revised on April 16, 2023 at 09:04:35. See the history of this page for a list of all contributions to it.