higher geometry / derived geometry
Ingredients
Concepts
geometric little (∞,1)-toposes
geometric big (∞,1)-toposes
Constructions
Examples
derived smooth geometry
Theorems
A locally ringed topos is a locally algebra-ed topos for the theory of local rings.
A ringed topos with enough points (such as the sheaf topos over a topological space) is a locally ringed topos if all stalks are local rings.
This is a special case of the following equivalent definitions:
A locally ringed topos is a topos equipped with a commutative ring object (see ringed topos) that in addition satisfies the axioms
(note these are axioms for a geometric theory, interpreted according to Kripke-Joyal semantics in a topos).
A ringed topos is a locally algebra-ed topos for the theory of local rings:
a topos
equipped with a geometric morphism
into the Zariski topos, the classifying topos for the theory of local rings.
This is for instance in Johnstone (2002) and in Lurie (2009), remark 2.5.11
ringed topos, locally ringed topos
Original references
Alexander Grothendieck, Jean-Louis Verdier, Topos annelés, localisation dans les topos annelés, Section 11 in Exposé iv in: M. Artin et al., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Mathematics 269, Springer (1972) [doi:10.1007/BFb0081551, pdf]
Monique Hakim, Chapitre III in: Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete 64, Springer (1972) [doi:10.1007/978-3-662-59155-0]
See also:
Saunders MacLane, Ieke Moerdijk, Section VIII.6 ofL Sheaves in Geometry and Logic (1992)
Jacob Lurie, Section 2.5 of: Structured Spaces (2009)
Aise Johan de Jong, Section 14.33 of: The Stacks Project (pdf) (project website)
Last revised on April 16, 2023 at 08:55:53. See the history of this page for a list of all contributions to it.