geometric representation theory
representation, 2-representation, ∞-representation
Grothendieck group, lambda-ring, symmetric function, formal group
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
Be?linson-Bernstein localization?
(…)
Due to:
Further discussion in the context of Jucys-Murphy elements:
G. E. Murphy, A new construction of Young’s seminormal representation of the symmetric groups, Journal of Algebra Volume 69, Issue 2, April 1981, Pages 287-297 (doi:10.1016/0021-8693(81)90205-2)
G. E. Murphy, The idempotents of the symmetric group and Nakayama’s conjecture, Journal of Algebra Volume 81, Issue 1, March 1983, Pages 258-265 (pdf)
G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra 152 (1992) 492–513 (pdf, doi:10.1016/0021-8693(92)90045-N))
On the representation theory of the symmetric group via the Gelfand-Tsetlin basis/seminormal representation:
Part I: Selecta Mathematica, New Series 2, 581-605 (arXiv:math/0503040, doi:10.1007/BF02433451); Part II (incorporates Part I in revised and improved form): Russian version: Записки научных семинаров ПОМИ 307 (2004), 57–98 (Zapiski nauchnyh seminarov POMI 307 (2004), 57–98); English version: Journal of Mathematical Sciences 131 (2005), 5471–5494 (doi:10.1007/s10958-005-0421-7).
Last revised on May 19, 2021 at 12:45:45. See the history of this page for a list of all contributions to it.