nLab
actegory

Contents

Context

Monoidal categories

Category theory

Contents

Idea

As monoidal categories are a vertical categorification of monoids, actegories are a vertical categorification of actions of a monoid. So given a monoidal category (C,,I,l,r,a)(C,\otimes,I,l,r,a) an actegory is another category DD with a notion of “tensor by object of CC”, i.e., a functor:

:C×DD\oslash : C \times D \to D

that is associative and unital up to natural isomorphism with respect to \otimes in ways that generalize actions of a monoid, and satisfy coherence laws similar to those of a monoidal category.

Definition

For any category AA, the category of endofunctors End(A)End(A) is monoidal with respect to the (horizontal) composition (the composition of functors and the Godement product for natural transformations).

Given a monoidal category (C,,1,l,r,a)(C,\otimes,1,l,r,a) a (left or right) CC-actegory is a category AA together with a (left or right) coherent action of CC on AA. Depending on an author and context, the left coherent action of CC on AA is a morphism of monoidal categories CEnd(A)C\to End(A) in the lax, colax, pseudo or strict sense (most often in pseudo-sense) or, in another terminology, a monoidal, comonoidal, strong monoidal or strict monoidal functor. Right coherent actions correspond to the monoidal functors into the category End(A)End(A) with the opposite tensor product.

CC-actegories, colax CC-equivariant functors and natural transformations of colax CC-equivariant functors form a strict 2-category CAct c_C Act^c. A monad in CAct c_C Act^c amounts to a pair of a monad in CatCat and a distributive law between the monad and an action of CC.

The notion of CC-action (hence a CC-actegory) is easily extendable to bicategories (see Baković‘s thesis).

References

  • Bodo Pareigis, Non-additive ring and module theory I. General theory of monoids, Publ. Math. Debrecen 24 (1977), 189–204. MR 56:8656; Non-additive ring and module theory II. C-categories, C-functors, and C-morphisms, Publ. Math. Debrecen 24 (351–361) 1977.

  • Max Kelly, George Janelidze, A note on actions of a monoidal category, Theory and Applications of Categories, Vol. 9, 2001, No. 4, pp 61–91 link

  • P. Schauenburg, Actions of monoidal categories and generalized Hopf smash products, J. Algebra 270 (2003) 521–563 (remark: actegories with action in the strong monoidal sense)

  • Zoran Škoda, Distributive laws for actions of monoidal categories, arxiv:0406310, Equivariant monads and equivariant lifts versus a 2-category of distributive laws, arxiv:0707.1609

Last revised on October 24, 2018 at 12:40:56. See the history of this page for a list of all contributions to it.