Contents

group theory

### Cohomology and Extensions

#### Representation theory

representation theory

geometric representation theory

## Examples

### $\infty$-Lie algebras

#### Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

$\array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }$

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

# Contents

## Definition

Given a Lie group $G$, it acts smoothly on the dual $g^*$ of its Lie algebra $g$ by the coadjoint action. The orbits of that action are called coadjoint orbits.

Coadjoint orbits are especially important in the orbit method of representation theory or, more generally, geometric quantization.

Sometimes coadjoint orbits are studied in the infinite-dimensional case (for example in study of Virasoro algebra).

## Properties

### As symplectic leaves of the Lie-Poisson structure

The dual $g^*$ of a (say finite-dimensional real) Lie algebra has a structure of a Poisson manifold with the Poisson structure due to A. Kirillov and Souriau, called the Lie-Poisson structure, namely for any $a\in g^*$,

$\{ f, g\}(a) := \langle [d f_a, d g_a],a\rangle$

The coadjoint orbits are the symplectic leaves of that structure; hence each orbit is a symplectic manifold.

• Bradley N. Currey, The Structure of the Space of Coadjoint Orbits of an Exponential Solvable Lie Group, ransactions of the American Mathematical Society Vol. 332, No. 1 (Jul., 1992), pp. 241-269, (JSTOR)