geometric representation theory
representation, 2-representation, ∞-representation
Grothendieck group, lambda-ring, symmetric function, formal group
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
Be?linson-Bernstein localization?
Kazhdan-Lusztig theory is about special recursive combinatorics which appears in several setups in mathematics, most notably in representation theory where it concerns the Jordan-Hölder coefficients of certain modules. As a phenomenon it has been discovered by David Kazhdan and George Lusztig, and some partial aspects independently by Deodhar. A central result is the Kazhdan-Lusztig conjecture, proved by Borho-Brylinski and by Masaki Kashiwara using D-modules and perverse sheaves.
David Kazhdan, George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184, MR81j:20066, doi
D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, in: Geometry of the Laplace operator, 185–203, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc. 1980.
Kazhdan-Lusztig theory, chapter 8 in James E. Humphreys, Representations of semisimple Lie algebras in the BGG category , Graduate Studies in Mathematics 94, Amer. Math. Soc. 2008. xvi+289 pp.
Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997) 37-68, pdf; engl. version Kazhdan-Lusztig polynomials and a combinatoric for tilting modules. Represent. Theory 1 (1997) 83-114, pdf.
R. Hotta, K. Takeuchi, T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics 236, Birkhäuser, Boston 2008.
Jean-Luc Brylinski, Masaki Kashiwara, Démonstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 6, A373–A376, MR81k:17004
Walter Borho, Jean-Luc Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules. Invent. Math. 69 (1982), no. 3, 437–476, MR84b:17007, doi; II. Relative enveloping algebras., Bull. Soc. Math. France 117 (1989), no. 2, 167–210, MR90j:17023, numdam
N. Chriss, V. Ginzburg, Representation theory and complex geometry, Birkhäuser 1997. x+495 pp.
Vinay V. Deodhar, On a construction of representations and a problem of Enright, Invent. Math. 57 (1980), no. 2, 101–118, MR81f:17004, doi
Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499–511, MR86f:20045, doi; II. The parabolic analogue of Kazhdan-Lusztig polynomials, MR89a:20054, doi90232-8)
Anthony Joseph, The Enright functor on the Bernstein-Gelʹfand-Gelʹfand category , Invent. Math. 67 (1982), no. 3, 423–445, MR84j:17005, doi
Kazhdan-Lusztig theory and related topics, Proc. of the AMS Special Session at Loyola Univ., Chicago 1989. Edited by Vinay Deodhar. Contemporary Mathematics 139, Amer. Math. Soc. 1992.
V. Deodhar, A brief survey of Kazhdan-Lusztig theory and related topics, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), 105–124, Proc. Sympos. Pure Math. 56, Part 1, Amer. Math. Soc. 1994.
Vinay V. Deodhar, Ofer Gabber, Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math. 45 (1982), no. 1, 92–116. MR83i:17012, doi80014-5)
O. Gabber, A Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261–302, MR83e:17009, numdam
The following article proves a conjecture from above article of Deodhar, Gabber and Kac:
Luis Casian, Proof of the Kazhdan-Lusztig conjecture for Kac-Moody algebras (the characters , Adv. Math. 119 (1996), no. 2, 207–281, MR97k:17033, doi
A. V. Zelevinskiĭ, The -adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen. 15 (1981), no. 2, 9–21, 96.
Luis G. Casian, David H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600, MR88i:17008, doi
Last revised on November 3, 2016 at 08:10:51. See the history of this page for a list of all contributions to it.