nLab superconformal super Lie group

Redirected from "superconformal group".

Idea

A superconformal super Lie group is a Lie group analog of a super Lie algebra which extends the Lie algebra of a conformal group, hence the Lie integration of a superconformal super Lie algebra. See at Supersymmetry – Classification – Superconformal symmetry.

groupsymboluniversal coversymbolhigher coversymbol
orthogonal groupO(n)\mathrm{O}(n)Pin groupPin(n)Pin(n)Tring groupTring(n)Tring(n)
special orthogonal groupSO(n)SO(n)Spin groupSpin(n)Spin(n)String groupString(n)String(n)
Lorentz groupO(n,1)\mathrm{O}(n,1)\,Spin(n,1)Spin(n,1)\,\,
anti de Sitter groupO(n,2)\mathrm{O}(n,2)\,Spin(n,2)Spin(n,2)\,\,
conformal groupO(n+1,t+1)\mathrm{O}(n+1,t+1)\,
Narain groupO(n,n)O(n,n)
Poincaré groupISO(n,1)ISO(n,1)Poincaré spin groupISO^(n,1)\widehat {ISO}(n,1)\,\,
super Poincaré groupsISO(n,1)sISO(n,1)\,\,\,\,
superconformal group

Last revised on January 31, 2017 at 03:43:56. See the history of this page for a list of all contributions to it.