nLab super Lie algebra



\infty-Lie theory

∞-Lie theory (higher geometry)


Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids



Related topics


\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Super-Algebra and Super-Geometry



A super Lie algebra is the analog of a Lie algebra in superalgebra/supergeometry.

See also supersymmetry.


There are various equivalent ways to state the definition of super Lie algebras. Here are a few (for more discussion see at geometry of physics – superalgebra):

As Lie algebras internal to super vector spaces


A super Lie algebra is a Lie algebra object internal to the symmetric monoidal category sVect=(Vect /2, k,τ super)sVect = (Vect^{\mathbb{Z}/2}, \otimes_k, \tau^{super} ) of super vector spaces (a Lie algebra object in super vector spaces). Hence this is

  1. a super vector space 𝔤\mathfrak{g};

  2. a homomorphism

    [,]:𝔤 k𝔤𝔤 [-,-] \;\colon\; \mathfrak{g} \otimes_k \mathfrak{g} \longrightarrow \mathfrak{g}

    of super vector spaces (the super Lie bracket)

such that

  1. the bracket is skew-symmetric in that the following diagram commutes

    𝔤 k𝔤 τ 𝔤,𝔤 super 𝔤 k𝔤 [,] [,] 𝔤 1 𝔤 \array{ \mathfrak{g} \otimes_k \mathfrak{g} & \overset{\tau^{super}_{\mathfrak{g},\mathfrak{g}}}{\longrightarrow} & \mathfrak{g} \otimes_k \mathfrak{g} \\ {}^{\mathllap{[-,-]}}\downarrow && \downarrow^{\mathrlap{[-,-]}} \\ \mathfrak{g} &\underset{-1}{\longrightarrow}& \mathfrak{g} }

    (here τ super\tau^{super} is the braiding natural isomorphism in the category of super vector spaces)

  2. the Jacobi identity holds in that the following diagram commutes

    𝔤 k𝔤 k𝔤 τ 𝔤,𝔤 super kid 𝔤 k𝔤 k𝔤 [,[,]][[,],] [,[,]] 𝔤. \array{ \mathfrak{g} \otimes_k \mathfrak{g} \otimes_k \mathfrak{g} && \overset{\tau^{super}_{\mathfrak{g}, \mathfrak{g}} \otimes_k id }{\longrightarrow} && \mathfrak{g} \otimes_k \mathfrak{g} \otimes_k \mathfrak{g} \\ & {}_{\mathllap{\left[-,\left[-,-\right]\right]} - \left[\left[-,-\right],-\right] }\searrow && \swarrow_{\mathrlap{\left[-,\left[-,-\right]\right]}} \\ && \mathfrak{g} } \,.

As super-graded Lie algebras

Externally this means the following:


A super Lie algebra according to def. is equivalently

  1. a /2\mathbb{Z}/2-graded vector space 𝔤 even𝔤 odd\mathfrak{g}_{even} \oplus \mathfrak{g}_{odd};

  2. equipped with a bilinear map (the super Lie bracket)

    [,]:𝔤 k𝔤𝔤 [-,-] : \mathfrak{g}\otimes_k \mathfrak{g} \to \mathfrak{g}

    which is graded skew-symmetric: for x,y𝔤x,y \in \mathfrak{g} two elements of homogeneous degree σ x\sigma_x, σ y\sigma_y, respectively, then

    [x,y]=(1) σ xσ y[y,x], [x,y] = -(-1)^{\sigma_x \sigma_y} [y,x] \,,
  3. that satisfies the /2\mathbb{Z}/2-graded Jacobi identity in that for any three elements x,y,z𝔤x,y,z \in \mathfrak{g} of homogeneous super-degree σ x,σ y,σ z 2\sigma_x,\sigma_y,\sigma_z\in \mathbb{Z}_2 then

    (1)[x,[y,z]]=[[x,y],z]+(1) σ xσ y[y,[x,z]]. [x, [y, z] ] = [ [x,y],z] + (-1)^{\sigma_x \cdot \sigma_y} [y, [x,z] ] \,.

A homomorphism of super Lie algebras is a homomorphisms of the underlying super vector spaces which preserves the Lie bracket. We write

sLieAlg sLieAlg

for the resulting category of super Lie algebras.

As formal duals of a Chevalley-Eilenberg super-algebras


For 𝔤\mathfrak{g} a super Lie algebra of finite dimension, then its Chevalley-Eilenberg algebra CE(𝔤)CE(\mathfrak{g}) is the super-Grassmann algebra on the dual super vector space

𝔤 * \wedge^\bullet \mathfrak{g}^\ast

equipped with a differential d 𝔤d_{\mathfrak{g}} that on generators is the linear dual of the super Lie bracket

d 𝔤[,] *:𝔤 *𝔤 *𝔤 * d_{\mathfrak{g}} \;\coloneqq\; [-,-]^\ast \;\colon\; \mathfrak{g}^\ast \to \mathfrak{g}^\ast \wedge \mathfrak{g}^\ast

and which is extended to 𝔤 *\wedge^\bullet \mathfrak{g}^\ast by the graded Leibniz rule (i.e. as a graded derivation).


Here all elements are (×/2)(\mathbb{Z} \times \mathbb{Z}/2)-bigraded, the first being the cohomological grading nn in n𝔤 *\wedge^\n \mathfrak{g}^\ast, the second being the super-grading σ\sigma (even/odd).

For α iCE(𝔤)\alpha_i \in CE(\mathfrak{g}) two elements of homogeneous bi-degree (n i,σ i)(n_i, \sigma_i), respectively, the sign rule is

α 1α 2=(1) n 1n 2(1) σ 1σ 2α 2α 1. \alpha_1 \wedge \alpha_2 = (-1)^{n_1 n_2} (-1)^{\sigma_1 \sigma_2}\; \alpha_2 \wedge \alpha_1 \,.

(See at signs in supergeometry for discussion of this sign rule and of an alternative sign rule that is also in use. )

We may think of CE(𝔤)CE(\mathfrak{g}) equivalently as the dg-algebra of left-invariant super differential forms on the corresponding simply connected super Lie group .

The concept of Chevalley-Eilenberg algebras is traditionally introduced as a means to define Lie algebra cohomology:


Given a super Lie algebra 𝔤\mathfrak{g}, then

  1. an nn-cocycle on 𝔤\mathfrak{g} (with coefficients in \mathbb{R}) is an element of degree (n,even)(n,even) in its Chevalley-Eilenberg algebra CE(𝔤)CE(\mathfrak{g}) (def. ) which is d 𝕘d_{\mathbb{g}} closed.

  2. the cocycle is non-trivial if it is not d 𝔤d_{\mathfrak{g}}-exact

  3. hene the super-Lie algebra cohomology of 𝔤\mathfrak{g} (with coefficients in \mathbb{R}) is the cochain cohomology of its Chevalley-Eilenberg algebra

    H (𝔤,)=H (CE(𝔤)). H^\bullet(\mathfrak{g}, \mathbb{R}) = H^\bullet(CE(\mathfrak{g})) \,.

The following says that the Chevalley-Eilenberg algebra is an equivalent incarnation of the super Lie algebra:


The functor

CE:sLieAlg findgAlg op CE \;\colon\; sLieAlg^{fin} \hookrightarrow dgAlg^{op}

that sends a finite dimensional super Lie algebra 𝔤\mathfrak{g} to its Chevalley-Eilenberg algebra CE(𝔤)CE(\mathfrak{g}) (def. ) is a fully faithful functor which hence exibits super Lie algebras as a full subcategory of the opposite category of differential-graded algebras.

As super-representable Lie algebras in the topos over superpoints

Equivalently, a super Lie algebra is a “super-representable” Lie algebra object internal to the cohesive (∞,1)-topos Super∞Grpd over the site of super points (Sachse 08, Section 3.2, towards cor. 3.3).

See the discussion at superalgebra for details on this.



(Kac 77a, Kac 77b) states a classification of super Lie algebras which are

  1. finite dimensional

  2. simple

  3. over a field of characteristic zero.

Such an algebra is called of classical type if the action of its even-degree part on the odd-degree part is completely reducible. Those simple finite dimensional algebras not of classical type are of Cartan type.

  1. classical type

    1. four infinite series

      1. A(m,n)A(m,n)

      2. B(m,n)=B(m,n) = osp(2m+1,2n)(2m+1,2n) m0m\geq 0, n>0n \gt 0

      3. C(n)C(n)

      4. D(m,n)=D(m,n) = osp(2m,2n)(2m,2n) m2m \geq 2, n>0n \gt 0

    2. two exceptional ones

      1. F(4)F(4)

      2. G(3)

    3. a family D(2,1;α)D(2,1;\alpha) of deformations of D(2,1)D(2,1)

    4. two “strange” series

      1. P(n)P(n)

      2. Q(n)Q(n)

  2. Cartan type


The underlying even-graded Lie algebra for type 2 is as follows

𝔤\mathfrak{g}𝔤 even\mathfrak{g}_{even}𝔤 even\mathfrak{g}_{even} rep on 𝔤 odd\mathfrak{g}_{odd}
B(m,n)B(m,n)B mC nB_m \oplus C_nvector \otimes vector
D(m,n)D(m,n)D mC nD_m \oplus C_nvector \otimes vector
D(2,1,α)D(2,1,\alpha)A 1A 1A 1A_1 \oplus A_1 \oplus A_1vector \otimes vector \otimes vector
F(4)F(4)B 3A 1B_3\otimes A_1spinor \otimes vector
G(3)G(3)G 2A 1G_2\oplus A_1spinor \otimes vector
Q(n)Q(n)A nA_nadjoint

For type 1 the /2\mathbb{Z}/2\mathbb{Z}-grading lifts to an \mathbb{Z}-grading with 𝔤=𝔤 1𝔤 0𝔤 1\mathfrak{g} = \mathfrak{g}_{-1}\oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1.

𝔤\mathfrak{g}𝔤 even\mathfrak{g}_{even}𝔤 even\mathfrak{g}_{even} rep on 𝔤 1\mathfrak{g}_{{-1}}
A(m,n)A(m,n)A mA nA_m \oplus A_n \oplus \mathbb{C}vector \otimes vector \otimes \mathbb{C}
A(m,m)A(m,m)A mA mA_m \oplus A_mvector \otimes vector
C(n)C(n)C n1C_{n-1} \oplus \mathbb{C}vector \otimes \mathbb{C}

reviewed e.g. in (Farmer 84, p. 25,26, Minwalla 98, section 4.1).

Relation to dg-Lie algebras

A dg-Lie algebra (𝔤,,[,])(\mathfrak{g}, \partial, [-,-]) may be understood equivalently as a super Lie algebra

(𝔤=𝔤 even𝔤 odd,[,,]) (\mathfrak{g} = \mathfrak{g}_{even} \oplus \mathfrak{g}_{odd}, [-,-,])

equipped with

  1. a lift of the 2\mathbb{Z}_2-grading of the underlying vector space to a \mathbb{Z}-graded vector space through the projection /2= 2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_2, hence

    𝔤 evenn𝔤 2n,AAA𝔤 oddn𝔤 2n+1 \mathfrak{g}_{even} \;\simeq\; \underset{n }{\oplus} \mathfrak{g}_{2n} \,, \phantom{AAA} \mathfrak{g}_{odd} \;\simeq\; \underset{n }{\oplus} \mathfrak{g}_{2n+1}

    such that

    [,]:𝔤 n 1𝔤 n 2𝔤 n 1+n 2 [-,-] \;\colon\; \mathfrak{g}_{n_1} \otimes \mathfrak{g}_{n_2} \longrightarrow \mathfrak{g}_{n_1 + n_2}
  2. an element Q𝔤 1Q \in \mathfrak{g}_{-1}

    such that

    (2)[Q,Q]=0 [Q,Q] = 0

(See also at “NQ-supermanifold”.)

Given this, define the differential to be the adjoint action by QQ:

[Q,]. \partial \;\coloneqq\; [Q,-] \,.

That this differential squares to 0 follows by the super-Jacobi identity (1) and by the nilpotency (2):

[Q,[Q,]]=[[Q,Q]=0,][Q,[Q,]]AAAA[Q,[Q,]]=0 [Q,[Q,-] ] \;=\; [ \underset{= 0}{\underbrace{[Q,Q]}}, - ] - [ Q, [Q, -] ] \phantom{AA} \Rightarrow \phantom{AA} [ Q,[Q,-] ] = 0

and the derivation-property of the differential over the bracket follows again with the super Jacobi identity (1):

[Q,[x,y]]=[[Q,x],y]+(1) deg(x)[x,[Q,y]]. [Q,[x,y] ] \;=\; [ [Q,x],y] + (-1)^{deg(x)} [x, [Q,y] ] \,.


Basic examples

Some obvious but important classes of examples are the following:


every /2\mathbb{Z}/2-graded vector space VV becomes a super Lie algebra (def. , prop. ) by taking the super Lie bracket to be the zero map

[,]=0. [-,-] = 0 \,.

These may be called the “abelian” super Lie algebras.


Every ordinary Lie algebras becomes a super Lie algebra (def. , prop. ) concentrated in even degrees. This constitutes a fully faithful functor

LieAlgsLieAlg. LieAlg \hookrightarrow sLieAlg \,.

which is a coreflective subcategory inclusion in that it has a left adjoint

LieAlg()sLieAlg LieAlg \underoverset {\underset{ \overset{ \rightsquigarrow}{(-)} }{\longleftarrow}} {\hookrightarrow} {\bot} sLieAlg

given on the underlying super vector spaces by restriction to the even graded part

𝔰=𝔰 even. \overset{\rightsquigarrow}{\mathfrak{s}} = \mathfrak{s}_{even} \,.

Super-Poincaré super Lie algebras (supersymmetry)

Embedding tensors and tensor hierarchy

The following example is highlighted in Palmkvist 13, 3.1 (reviewed more clearly in Lavau-Palmkvist 19, 2.4) where it is attributed to I. L. Kantor (1970).


Let VV be a finite-dimensional vector space over some ground field kk.

Define a \mathbb{Z}-graded vector space

V^Vect k , \widehat V \;\in \; Vect_k^{\mathbb{Z}} \,,

concentrated in degrees 1\leq 1, recursively as follows:

For n=1n =1 we set

V^ 1V. \widehat V_{1} \;\coloneqq\; V \,.

For n0n \leq 0 \in \mathbb{Z}, the component space in degree n1n-1 is taken to be the vector space of linear maps from VV to the component space in degree nn:

V^ n1Hom k(V,V^ n). \widehat V_{n-1} \;\coloneqq\; Hom_k( V, \widehat V_n ) \,.


(3)V^ 1 =V V^ 0 =Hom k(V,V)=𝔤𝔩(V) V^ 1 =Hom k(V,Hom k(V,V))Hom k(VV,V) V^ 2 =Hom k(V,Hom k(V,Hom k(V,V)))Hom k(VVV,V) \begin{aligned} \widehat V_1 & = V \\ \widehat V_0 & = Hom_k(V,V) = \mathfrak{gl}(V) \\ \widehat V_{-1} & = Hom_k(V, Hom_k(V,V)) \simeq Hom_k(V \otimes V, V) \\ \widehat V_{-2} & = Hom_k(V, Hom_k(V, Hom_k(V,V))) \simeq Hom_k(V \otimes V \otimes V, V) \\ \vdots \end{aligned}

Consider then the direct sum of these component spaces as a super vector space with the even number/odd number-degrees being in super-even/super-odd degree, respectively.

On this super vector space consider a super Lie bracket defined recusively as follows:

For all v 1,v 2V^ 1=Vv_1, v_2 \in \widehat V_1 = V we set

[v 1,v 2]=0. [v_1, v_2] \;=\; 0 \,.

For fV^ n0f \in \widehat V_{n \leq 0} and vV^ 1=Vv \in \widehat V_1 = V we set

(4)[f,v]f(v) [f, v] \;\coloneqq\; f(v)

Finally, for fV^ deg(f)0f\in \widehat V_{ deg(f) \leq 0 } and gV^ deg(g)0g\in \widehat V_{deg(g) \leq 0} we set

(5)[f,g] :v[f,g(v)](1) deg(f)deg(g)[g,f(v)] \begin{aligned} [f, g] & \colon\; v \;\mapsto\; [f, g(v)] - (-1)^{ deg(f) deg(g) } [ g, f(v) ] \\ \end{aligned}

By (4) the definition (5) is equivalent to

[[f,g],v]=[f,[g,v]](1) deg(f)deg(g)[g,[f,v]] [ [f,g],v ] \;=\; [f, [g,v] ] - (-1)^{ deg(f) deg(g) } [ g, [f,v] ]

Hence (5) is already implied by (4) if the bracket is to satisfy the super Jacobi identity (1).

It remains to show that:


Def. indeed gives a super Lie algebra in that the bracket (5) satisfies the super Jacobi identity (1).


We proceed by induction:

By Remark we have that the super Jacobi identity holds for for all triples f 1,f 2,f 3V^f_1, f_2, f_3 \in \widehat{V} with deg(f 3)0deg(f_3) \geq 0.

Now assume that the super Jacobi identity has been shown for triples (f 1,f 2,f 3(v))(f_1, f_2, f_3(v)) and (f 1,f 3,f 2(v))(f_1, f_3, f_2(v)), for any vVv \in V. The following computation shows that then it holds for (f 1,f 2,f 3)(f_1, f_2, f_3):

[f 1,[f 2,f 3]](v) =[f 1,[f 2,f 3](v)](1) deg(f 1)(deg(f 2)+deg(f 3))[[f 2,f 3],f 1(v)] =[f 1,[f 2,f 3(v)]] =(1) deg(f 2)deg(f 3)[f 1,[f 3,f 2(v)]] =(1) deg(f 1)(deg(f 2)+deg(f 3))[f 2,[f 3,f 1(v)]] =+(1) deg(f 1)(deg(f 2)+deg(f 3))+deg(f 2)deg(f 3)[f 3,[f 2,f 1(v)]] =[f 1,[f 2,f 3(v)]](1) deg(f 1)deg(f 2)[f 2,[f 1,f 3(v)]] =(1) deg(f 2)deg(f 3)([f 1,[f 3,f 2(v)]](1) deg(f 1)deg(f 3)[f 3,[f 1,f 2(v)]]) =(1) deg(f 1)(deg(f 2)+deg(f 3))([f 2,[f 3,f 1(v)]](1) deg(f 1)deg(f 3)[f 2,[f 1,f 3(v)]]) =+(1) deg(f 1)deg(f 2)+deg(f 1)deg(f 3)+deg(f 2)deg(f 3)([f 3,[f 2,f 1(v)]](1) deg(f 1)deg(f 2)[f 3,[f 1,f 2(c)]]) =+(1) deg(f 1)deg(f 2)(+[f 2,[f 1,f 3(v)]][f 2,[f 1,f 3(v)]]=0) =+(1) deg(f 1)deg(f 3)+deg(f 2)deg(f 3)([f 3,[f 1,f 2(v)]][f 3,[f 1,f 2(v)]]=0) =[[f 1,f 2],f 3(v)] =(1) deg(f 2)deg(f 3)[[f 1,f 3],f 2(c)] =+(1) deg(f 1)deg(f 2)[f 2,[f 1,f 3](v)] =(1) deg(f 3)(deg(f 1)+deg(f 2))[f 3,[f 1,f 2](v)] =[[f 1,f 2],f 3](v)+(1) deg(f 1)deg(f 2))[f 2,[f 1,f 3]](v) \begin{aligned} [f_1, [f_2, f_3] ] (v) & = [ f_1, [f_2, f_3](v) ] - (-1)^{deg(f_1)(deg(f_2) + deg(f_3))} [ [ f_2, f_3 ], f_1(v) ] \\ & = [ f_1, [ f_2, f_3(v) ] ] \\ & \phantom{=} - (-1)^{deg(f_2)deg(f_3)} [ f_1, [ f_3, f_2(v) ] ] \\ & \phantom{=} - (-1)^{deg(f_1)(deg(f_2) + deg(f_3))} [ f_2, [ f_3, f_1(v) ] ] \\ & \phantom{=} + (-1)^{deg(f_1)(deg(f_2) + deg(f_3)) + deg(f_2)deg(f_3)} [ f_3, [ f_2, f_1(v) ] ] \\ & = [ f_1, [ f_2, f_3(v) ] ] - (-1)^{deg(f_1) deg(f_2)} { \color{green} [ f_2, [ f_1, f_3(v) ] ] } \\ & \phantom{=} - (-1)^{deg(f_2) deg(f_3)} \big( [ f_1, [ f_3, f_2(v) ] ] - (-1)^{deg(f_1) deg(f_3)} { \color{orange} [ f_3, [ f_1, f_2(v) ] ] } \big) \\ & \phantom{=} - (-1)^{deg(f_1)(deg(f_2) + deg(f_3))} \big( [ f_2, [ f_3, f_1(v) ] ] - (-1)^{deg(f_1)deg(f_3)} { \color{blue} [ f_2, [ f_1, f_3(v) ] ] } \big) \\ & \phantom{=} + (-1)^{deg(f_1) deg(f_2 ) + deg(f_1) deg(f_3) + deg(f_2) deg(f_3)} \big( [ f_3, [ f_2, f_1(v) ] ] - (-1)^{deg(f_1) deg(f_2)} { \color{cyan} [ f_3, [ f_1, f_2(c) ] ] } \big) \\ & \phantom{=} + (-1)^{deg(f_1) deg(f_2)} \big( \underset{ = 0 }{ \underbrace{ + { \color{green} [ f_2, [ f_1, f_3(v) ] ] } - { \color{blue} [ f_2, [ f_1, f_3(v) ] ] } } } \big) \\ & \phantom{=} + (-1)^{deg(f_1) deg(f_3) + deg(f_2) deg(f_3)} \big( \underset{ = 0 }{ \underbrace{ { \color{orange} [ f_3, [ f_1, f_2(v) ] ] } - { \color{cyan} [ f_3, [ f_1, f_2(v) ] ] } } } \big) \\ & = \big[ [f_1, f_2], f_3(v) \big] \\ & \phantom{=} - (-1)^{ deg(f_2) deg(f_3) } \big[ [f_1, f_3], f_2(c) \big] \\ & \phantom{=} + (-1)^{ deg(f_1) deg(f_2) } \big[ f_2, [f_1, f_3](v) \big] \\ & \phantom{=} - (-1)^{ deg(f_3)( deg(f_1) + deg(f_2) ) } \big[ f_3, [f_1, f_2](v) \big] \\ & = \big[ [f_1, f_2], f_3 \big](v) + (-1)^{deg(f_1)deg(f_2))} \big[ f_2, [f_1, f_3] \big](v) \end{aligned}

(Fine, but is this sufficient to induct over the full range of all three degrees?)


For f,gV^ 0=Hom k(V,V)f,g \in \widehat V_0 = Hom_k(V,V) (3) we have that the bracket on V^\widehat V in Def. restricts to

[f,g](v)=[f,g(v)][g,f(v)]=f(g(v))g(f(v)) [f,g](v) \;=\; [f,g(v)] - [g,f(v)] \;=\; f(g(v)) - g(f(v))

(by combining (5) with (4)).

This is the Lie bracket of the general linear Lie algebra 𝔤𝔩(V)\mathfrak{gl}(V), as indicated on the right in (3).


(embedding tensors are square-0 elements in V^\widehat{V})

Let kk be a ground field of characteristic zero.

An element in degree -1 of the super Lie algebra V^\widehat V from Def. ,

ΘV^ 1Hom k(V,𝔤𝔩(V)), \Theta \in \widehat V_{-1} \simeq Hom_{k}(V, \mathfrak{gl}(V)) \,,

which by Example is identified with a linear map

Θ:V𝔤𝔤𝔩(V) \Theta \;\colon\; V \longrightarrow \mathfrak{g} \coloneqq \mathfrak{gl}(V)

from VV to the general linear Lie algebra on VV, is square-0 (2) precisely if it is an embedding tensor, in that:

[Θ,Θ]=0AAAAAA[Θ(v 1),Θ(v 2)]=Θ(ρ Θ(v)1)(v 2)). [\Theta, \Theta] \;=\; 0 \phantom{AAA} \Leftrightarrow \phantom{AAA} [\Theta(v_1), \Theta(v_2) ] \;=\; \Theta( \rho_{\Theta(v)1)}(v_2) ) \,.

Here on the right, [,][-,-] denotes the Lie bracket in 𝔤𝔩(V)\mathfrak{gl}(V), while ρ\rho denotes the canonical Lie algebra action of 𝔤𝔩(V)\mathfrak{gl}(V) on VV.


By unwinding of the definition (4) and (5) and using again Example we compute as follows:

(12[Q,Q](v 1))(v 2) =[Q,Q(v 1)](v 2) =[Q,(Q(v 1))(v 2)=ρ Θ(v 1)(v 2)][Q(v 1),Q(v 2)] =Θ(ρ Θ(v 1)(v 2))[Θ(v 1),Θ(v)] \begin{aligned} \big( \tfrac{1}{2} [Q,Q](v_1) \big)(v_2) & = [Q, Q(v_1)](v_2) \\ & = [Q, \underset{ \mathclap{ = \rho_{\Theta(v_1)}(v_2) } } { \underbrace{ (Q(v_1))(v_2) } } ] - [Q(v_1), Q(v_2)] \\ & = \Theta( \rho_{\Theta(v_1)}(v_2) ) - [ \Theta(v_1), \Theta(v) ] \end{aligned}

(embedding tensors induce tensor hierarchies)

In view of the relation between super Lie algebras and dg-Lie algebras (above), Prop. says that every choice of an embedding tensor for a faithful representation on a vector space VV induces a dg-Lie algebra (V^,[,],[Θ,])(\widehat V, [-,-], \partial \coloneqq [\Theta, -]).

According to Palmkvist 13, 3.1, Lavau-Palmkvist 19, 2.4 this dg-Lie algebra (or some extension of some sub-algebra of it) is the tensor hierarchy associated with the embedding tensor.


According to Kac77b the definition of super Lie algebra is originally due to

  • Felix Berezin, G. I. Kac, Math. Sbornik 82, 343—351 (1970) (Russian)

See also

  • Isaiah Kantor, Graded Lie algebras, Trudy Sem. Vektor. Tenzor. Anal 15 (1970): 227-266.

The original references on the classification of super Lie algebras are

See also

  • Werner Nahm, V. Rittenberg, Manfred Scheunert, The classification of graded Lie algebras , Physics Letters B Volume 61, Issue 4, 12 April 1976, Pages 383–384 (publisher)

  • M. Parker, Classification Of Real Simple Lie Superalgebras Of Classical Type, J.Math.Phys. 21 (1980) 689-697 (spire)

Further discussion of classification related specifically to classification of supersymmetry is due to

Introductions and surveys include

  • Richard Joseph Farmer, Orthosymplectic superalgebras in mathematics and science, PhD Thesis (1984) (web, pdf)

  • L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie Superalgebras (arXiv:hep-th/9607161)

  • Groeger, Super Lie groups and super Lie algebras, lecture notes 2011 (pdf)

  • L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie Superalgebras (arXiv:hep-th/9607161)

  • D. Leites, Lie superalgebras, J. Soviet Math. 30 (1985), 2481–2512 (web)

  • Manfred Scheunert, The theory of Lie superalgebras. An introduction, Lect. Notes Math. 716 (1979)

  • D. Westra, Superrings and supergroups (pdf)

  • Shiraz Minwalla, Restrictions imposed by superconformal invariance on quan tum field theories Adv. Theor. Math. Phys. 2, 781 (1998)


Discussion in the topos over superpoints is in

Discussion of Lie algebra extensions for super Lie algebras includes

On Lie algebra weight systems arising from super Lie algebras:

On Lie algebra cohomology of super Lie algebras (see also the brane scan) in relation to integrable forms of coset supermanifolds:

Last revised on March 4, 2023 at 06:46:06. See the history of this page for a list of all contributions to it.