Bogomologv-Gieseker inequality:
review:
Naoki Koseki, p. 1 of: On the Bogomolov-Gieseker inequality in positive characteristic (arXiv:2008.09800)
Arend Bayer, Emanuele Macrì, Paolo Stellari, Section 3 of: The Space of Stability Conditions on Abelian Threefolds, and on some Calabi-Yau Threefolds, Invent. math. 206 (2016) 869–933 (arXiv:1410.1585, doi:10.1007/s00222-016-0665-5)
Proposals for classification of semi-metals:
Bohm-Jung Yang, Naoto Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology, Nature Communications 5 (2014) 4898 (doi:10.1038/ncomms5898)
Varghese Mathai, Guo Chuan Thiang, Global topology of Weyl semimetals and Fermi arcs, J. Phys. A: Math. Theor. 50 (2017) 11LT01 (arXiv:1607.02242, doi:10.1088/1751-8121/aa59b2)
Jiaheng Li, Zetao Zhang, Chong Wang, Huaqing Huang, Bing-Lin Gu, Wenhui Duan, Topological semimetals from the perspective of first-principles calculations, Journal of Applied Physics 128, 191101 (2020) (doi:10.1063/5.0025396)
by mass terms:
Takahiro Morimoto and Akira Furusaki, Topological classification with additional symmetries from Clifford algebras, Phys. Rev. B 88 (2013) 125129 (arXiv:1306.2505, doi:10.1103/PhysRevB.88.125129)
Ching-Kai Chiu, Jeffrey C.Y. Teo, Andreas P. Schnyder, Shinsei Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88 (2016) 035005 (arXiv:1505.03535, doi:10.1103/RevModPhys.88.035005)
reviewed in:
Andreas P. Schnyder, Accidental and symmetry-enforced band crossings in topological semimetals lecture notes 2018 (pdf)
Andreas P. Schnyder, Topological semimetals, lecture notes 2020 (pdf)
Berry phases as roots of unity:
Isao Maruyama, Shin Miyahara, Fractionally quantized Berry phases of magnetization plateaux in spin-1/2 Heisenberg multimer chains, J. Phys. Soc. Jpn. 87, 123703 (2018) (arXiv:1808.10138, doi:10.7566/JPSJ.87.123703)
Yuichi Motoyama, Synge Todo, Berry phase and symmetry protected topological phases of SU(N) antiferromagnetic Heisenberg chain, Phys. Rev. B 98, 195127 (2018) (arXiv:1508.00960)
Berry connection:
Michael Victor Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392 (1984) 45–57 (doi:10.1098/rspa.1984.0023, jstor:2397741)
Barry Simon, Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase, Phys. Rev. Lett. 51 (1983) 2167 (doi:10.1103/PhysRevLett.51.2167)
J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62 (1989) 2747 (doi:10.1103/PhysRevLett.62.2747)
Ming-Che Chang, Qian Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys.: Condens. Matter 20 (2008) 193202 (doi:10.1088/0953-8984/20/19/193202)
Di Xiao, Ming-Che Chang, Qian Niu, Berry Phase Effects on Electronic Properties, Rev. Mod. Phys. 82 (2010) 1959-2007 (arXiv:0907.2021, doi:10.1103/RevModPhys.82.1959)
David Vanderbilt, Berry Phases in Electronic Structure Theory – Electric Polarization, Orbital Magnetization and Topological Insulators (2018) (doi:10.1017/9781316662205)
Concentration of Berry curvature around Dirac/Weyl points:
Yang Zhang, Yan Sun, Binghai Yan, The Berry curvature dipole in Weyl semimetal materials: an ab initio study, Phys. Rev. B 97 (2018) 041101 (arXiv:1708.08589, doi:10.1103/PhysRevB.97.041101)
J. N. Fuchs, F. Piéchon, M. O. Goerbig, G. Montambaux, Figure 1 in: Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B 77, 351–362 (2010) (doi:10.1140/epjb/e2010-00259-2, arXiv:1006.5632)
ocw.tudelft.nl/course-readings/gap-closings-sources-berry-curvature
Fan Yang, Xiaodong Xu, Ren-Bao Liu, Fig. 1 in: Giant Faraday rotation induced by Berry phase in bilayer graphene under strong terahertz fields, New J. Phys. 16 (2014) 043014 (arXiv:1307.7987, doi:10.1088/1367-2630/16/4/043014)
Yugui Yao, Leonard Kleinman, A. H. MacDonald, Jairo Sinova, T. Jungwirth, Ding-sheng Wang, Enge Wang, and Qian Niu, First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe, Phys. Rev. Lett. 92 (2004) 037204 (doi:10.1103/PhysRevLett.92.037204)
Xinjie Wang, Jonathan R. Yates, Ivo Souza, David Vanderbilt, Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation, Phys. Rev. B 74 (2006) 195118 (arXiv:cond-mat/0608257, doi:10.1103/PhysRevB.74.195118)
Inti Sodemann and Liang Fu, Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett. 115 (2015) 216806 (doi:10.1103/PhysRevLett.115.216806)
Berry curvature often concentrates in small regions in momentum space where two or more bands cross or nearly cross.
Chuanchang Zeng, Snehasish Nandy, Sumanta Tewari, Nonlinear transport in Weyl semimetals induced by Berry curvature dipole, Phys. Rev. B 103 (2021) 245119 (doi:10.1103/PhysRevB.103.245119)
Berry curvature tends to concentrate around regions where more than one bands touch or nearly cross in the momentum space
also:
Y. J. Jin, B. B. Zheng, X. L. Xiao, Z. J. Chen, Y. Xu, H. Xu, Two-dimensional Dirac Semimetals without Inversion Symmetry, Phys. Rev. Lett. 125 116402 (2020) (arXiv:2008.10175, doi:10.1103/PhysRevLett.125.116402)
Wang, Guanglei ; Xu, Hongya ; Lai, Ying-Cheng, Mechanical topological semimetals with massless quasiparticles and a finite Berry curvature, Phys. Rev. B 95 (2017) 235159 (doi:10.1103/PhysRevB.95.235159)
Nesta Benno Joseph, Saswata Roy, Awadhesh Narayan, Tunable topology and berry curvature dipole in transition metal dichalcogenide Janus monolayers, Mater. Res. Express 8 124001 (doi:10.1088/2053-1591/ac440b)
Justin C. W. Song, Polnop Samutpraphoot, Leonid S. Levitov, Topological Bloch Bands in Graphene Superlattices, Proceedings of the National Academy of Sciences 112 35 (2015) 10879-10883 (arXiv:1404.4019, doi:10.1073/pnas.1424760112)
Frédéric Piéchon, Arnaud Raoux, Jean-Noël Fuchs, Gilles Montambaux, Geometric orbital susceptibility: quantum metric without Berry curvature, Phys. Rev. B 94 134423 (2016) (arXiv:1605.01258, doi:10.1103/PhysRevB.94.134423)
Afsal Kareekunnan, Manoharan Muruganathan, and Hiroshi Mizuta, Manipulating Berry curvature in hBN/bilayer graphene commensurate heterostructures, Phys. Rev. B 101 (2020) 195406 (doi:10.1103/PhysRevB.101.195406)
2d semi-metals:
3d semi-metals:
A. A. Burkov, M. D. Hook, Leon Balents, Topological nodal semimetals, Phys. Rev. B 84 (2011) 235126 (arXiv:1110.1089, doi:10.1103/PhysRevB.84.235126)
Chen Fang, Hongming Weng, Xi Dai, Zhong Fang, Topological nodal line semimetals, Chinese Phys. B 25 (2016) 117106 (arXiv:1609.05414, doi:10.1088/1674-1056/25/11/117106)
Braiding of Dirac/Weyl points:
QuanSheng Wu, Alexey A. Soluyanov, Tomáš Bzdušek, Non-Abelian band topology in noninteracting metals, Science 365 (2019) 1273-1277 (arXiv:1808.07469 ,doi:10.1126/science.aau8740)
Apoorv Tiwari, Tomáš Bzdušek, Non-Abelian topology of nodal-line rings in PT-symmetric systems, Phys. Rev. B 101 (2020) 195130 (doi:10.1103/PhysRevB.101.195130)
a new type non-Abelian “braiding” of nodal-line rings inside the momentum space
Here we report that Weyl points in three-dimensional (3D) systems with symmetry (time reversal composed with a -rotation) carry non-Abelian topological charges. These charges are transformed via non-trivial phase factors that arise upon braiding the nodes inside the reciprocal momentum space.
new opportunities for exploring non-Abelian braiding of band crossing points (nodes) in reciprocal space [47–52], providing an alternative to the real space braiding exploited by other strategies. Real space braiding is practically constrained to boundary states, which has made experimental observation and manipulation difficult; instead, reciprocal space braiding occurs in the bulk states of the band structures and we demonstrate in this work that this provides a straightforward platform for non-Abelian braiding.
Bo Peng, Adrien Bouhon, Bartomeu Monserrat, Robert-Jan Slager,Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates, Nature Communications volume 13, Article number: 423 (2022) (doi:10.1038/s41467-022-28046-9)
Haedong Park, Wenlong Gao, Xiao Zhang, Sang Soon Oh, Nodal lines in momentum space: topological invariants and recent realizations in photonic and other systems, Nanophotonics (2022) (doi:10.1515/nanoph-2021-0692)
Spin-orbit coupling and quantum spin Hall effect:
Masud Mansuripur, Spin-orbit coupling in the hydrogen atom, the Thomas precession, and the exact solution of Dirac’s equation, Spintronics XII, Proceedings of SPIE Vol. 11090, 110901X (2019) (arXiv:1909.07333, doi:10.1117/12.2529885)
Joseph Maciejko, Taylor L. Hughes, Shou-Cheng Zhang, The Quantum Spin Hall Effect, Annual Review of Condensed Matter Physics, 2 (2011) 31-53 (doi:10.1146/annurev-conmatphys-062910-140538, pdf)
On relativistic solid state physics:
Paul Strange, Relativistic Quantum Mechanics – with applications in condensed matter and atomic physics, Cambridge University Press (1998) (doi:10.1017/CBO9780511622755)
Bernd Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer (1992) (doi:10.1007/978-3-662-02753-0)
On topological insulators with the proper Dirac equation:
On Fredholm operators from/for CARs:
P. J. M. Bongaarts, The electron-positron field, coupled to external electromagnetic potentials, as an elementary algebra theory, Physics Letters B 779 (2018) 420-424 (doi:10.1016/j.physletb.2018.02.035)
M. Klaus, G. Scharf, The regular external field problem in quantum electrodynamics, Helvetica Physica Acta 50 (1977) (doi:10.5169/seals-114890, pdf)
A. L. Carey, C. A. Hurst, D. M. O’Brien, Automorphisms of the canonical anticommutation relations and index theory, Journal of Functional Analysis 48 3 (1982) 360-393 (doi:10.1016/0022-1236(82)90092-1)
followup:
A. L. Carey, D. M. O’Brien, Absence of vacuum polarisation in fock space, Letters in Mathematical Physics 6 335–340 (1982) (doi:10.1007/BF00419312)
P. Falkensteiner & H. Grosse, Quantization of fermions interacting with point-like external fields, Lett Math Phys 14 (1987) 139–148 (doi:10.1007/BF00420304)
explicit application to crystals:
Topological insulators via Fredholm operators (or rather Fredholm modules):
Julian Grossmann, Hermann Schulz-Baldes, Index pairings in presence of symmetries with applications to topological insulators, Commun. Math. Phys. 343 (2016) 477-513 (arXiv:1503.04834, doi:10.1007/s00220-015-2530-6)
Emil ProdanHermann Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators – From K-Theory to Physics, Springer (2016) (doi:10.1007/978-3-319-29351-6)
Hermann Schulz-Baldes, Topological insulators from the perspective of non-commutative geometry and index theory (2017) (pdf)
Jacob Shapiro, Topology and Localization: Mathematical Aspects of Electrons in Strongly-Disordered Media (2018) (doi:10.3929/ethz-b-000300657)
The Haldane model
On operator K-theory:
Triviality of Bloch bundles (existence of Bloch frames):
Gianluca Panati, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré 8 (2007) 995-1011 (arXiv:math-ph/0601034, doi:10.1007/s00023-007-0326-8)
Giuseppe De Nittis, Max Lein, Exponentially Localized Wannier Functions in Periodic Zero Flux Magnetic Fields, Journal of Mathematical Physics 52 (2011) 112103 (arXiv:1108.5651, doi:10.1063/1.3657344)
Domenico Fiorenza, Domenico Monaco, Gianluca Panati, Construction of real-valued localized composite Wannier functions for insulators, Annales Henri Poincaré 17 1 (2016) 63-97 (arXiv:1408.0527, doi:10.1007/s00023-015-0400-6)
Domenico Fiorenza, Domenico Monaco, Gianluca Panati, invariants of topological insulators as geometric obstructions, Commun. Math. Phys. 343 1115-1157 (2016) (arXiv:1408.1030, doi:10.1007/s00220-015-2552-0)
Horia D. Cornean, Ira Herbst, Gheorghe Nenciu, On the construction of composite Wannier functions, Annales Henri Poincaré, 17 12 (2016) 3361-3398 (arXiv:1506.07435, doi:10.1007/s00023-016-0489-2)
Domenico Monaco, Gianluca Panati, Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry, Acta Appl. Math. 137 (2015) 185-203 (arXiv:1601.02906, doi:10.1007/s10440-014-9995-8)
D. Monaco, G. Panati, A. Pisante, S. Teufel, Optimal decay of Wannier functions in Chern and Quantum Hall insulators, Commun. Math. Phys. 359 61-100 (2018) (doi:10.1007/s00220-017-3067-7, arXiv:1612.09552)
Amplification in:
Michel Fruchart, David Carpentier, An introduction to topological insulators, Comptes Rendus Physique 14 9–10 (2013) Pages 779-815 (arXiv:1310.0255, doi:10.1016/j.crhy.2013.09.013)
David Carpentier, Topology of Bands in Solids: From Insulators to Dirac Matter, in Dirac Matter Progress in Mathematical Physics, 71 Birkhäuser (2017) (arXiv:1408.1867, doi:10.1007/978-3-319-32536-1_5)
Origins of K-theory classification of topological phases:
More on TE-K classification of symmetry protected topological phases:
Xiao-Gang Wen, Symmetry protected topological phases in non-interacting fermion systems, Phys. Rev. B 85 085103 (2012) (doi:10.1103/PhysRevB.85.085103)
K. Shiozaki, M. Sato, K. Gomi, Topological Crystalline Materials – General Formulation, Module Structure, and Wallpaper Groups, Phys. Rev. B 95 (2017) 235425 (arXiv:1701.08725, doi:10.1103/PhysRevB.95.235425)
Luuk Stehouwer, K-theory Classifications for Symmetry-Protected Topological Phases of Free Fermions, 2018 (pdf, pdf)
L. Stehouwer, J. de Boer, J. Kruthoff, H. Posthuma, Classification of crystalline topological insulators through K-theory (arXiv:1811.02592)
Eyal Cornfeld, Adam Chapman, Classification of Crystalline Topological Insulators and Superconductors with Point Group Symmetries, Phys. Rev. B 99 075105 (2019) (arXiv:1811.01977, doi:10.1103/PhysRevB.99.075105)
Eyal Cornfeld, Shachar Carmeli, Tenfold Topology of Crystals: Unified classification of crystalline topological insulators and superconductors, Phys. Rev. Research 3, 013052 (2021) (arXiv:2009.04486, doi:10.1103/PhysRevResearch.3.013052)
Sven van Nigtevecht, Topological phases and K-theory, 2019 (pdf)
Brillouin zones and orbifolds:
Majorana zero modes are Ising anyons:
Ising Anyons and Majorana Fermions (web)
Sankar Das Sarma, Michael Freedman, Chetan Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf 1 15001 (2015) (doi:10.1038/npjqi.2015.1)
On how to (not) move anyons to braid them:
Parsa Bonderson, Michael Freedman, Chetan Nayak, Measurement-Only Topological Quantum Computation, Phys. Rev. Lett. 101 010501 (2008) (arXiv:0802.0279)
Parsa Bonderson, Michael Freedman, Chetan Nayak, Measurement-Only Topological Quantum Computation via Anyonic Interferometry, Annals Phys. 324, 787-826 (2009) (arXiv:0808.1933, doi:10.1016/j.aop.2008.09.009)
Parsa Bonderson, Measurement-Only Topological Quantum Computation via Tunable Interactions., Phys. Rev. B 87 035113 (2013) (arXiv:1210.7929, arXiv:10.1103/PhysRevB.87.035113)
Huaixiu Zheng, Arpit Dua, Liang Jiang, Measurement-only topological quantum computation without forced measurements, New J. Phys. 18 123027 (2016) (arXiv:1607.07475, doi:10.1088/1367-2630/aa50bb)
Sagar Vijay, Liang Fu, Braiding without Braiding: Teleportation-Based Quantum Information Processing with Majorana Zero Modes, Phys. Rev. B 94, 235446 (2016) (arXiv:1609.00950, doi:10.1103/PhysRevB.94.235446)
C. W. J. Beenakker, Search for non-Abelian Majorana braiding statistics in superconductors, SciPost Phys. Lect. Notes 15 (2020) (arXiv:1907.06497, doi:10.1103/PhysRevB.94.235446)
On how to detect topological qbits:
Anyons wavefunctions as conformal blocks:
Anyons and Gaussian conformal field theories (1992) (doi:10.1142/S0217732391000257)
Alberto Lerda, Ch. 9 of: Anyons – Quantum Mechanics of Particles with Fractional Statistics Lectures Notes in Physics 14, Springer (1992) (doi:10.1007/978-3-540-47466-1)
Lei Su, Fractional Quantum Hall States with Conformal Field Theories (pdf)
Hua-Chen Zhang, Ying-Hai Wu, Tao Xiang, Hong-Hao Tu, Chiral conformal field theory for topological states and the anyon eigenbasis on the torus (arXiv:2107.02596)
Xia Gu, Babak Haghighat, Yihua Liu, Ising- and Fibonacci-Anyons from KZ-equations (arXiv:2112.07195)
More on topological phases:
Tian Lan, A Classification of (2+1)D Topological Phases with Symmetries (arXiv:1801.01210)
B. Andrei Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press (2013) (ISBN:9780691151755, pdf)
synonymous to ground state space not affected by local operators:
Topological order of a topological phase the the UMTC of its anyons/edge modes.
On UMTCs (UMTCs are those corresponding to actual 2d field theories, satisfying reflection positivity etc.)
Topological order, topological phases and anyons:
Delaney, A categorical perspective on symmetry, topological order, and quantum information (pdf)
Lan, A Classification of (2+1)D Topological Phases with Symmetries (arXiv:1801.01210)
Anyons on a torus:
Torbjörn Einarsson, Fractional statistics on a torus, Phys. Rev. Lett. 64 17 (1990) (doi:10.1103/PhysRevLett.64.1995)
Roberto Iengo, Kurt Lechner, Quantum mechanics of anyons on a torus, Nuclear Physics B 346 2–3 (1990) 551-575 (doi:10.1016/0550-3213(90)90292-L)
Yutaka Hosotani, Choon-Lin Ho, Anyons on a Torus, AIP Conference Proceedings 272 (1992) 1466 ; (arXiv:hep-th/9210112, doi:10.1063/1.43444)
Martin Greiter, Frank Wilczek, Exact solutions and the adiabatic heuristic for quantum Hall states, Nuclear Physics B 370 3 (1992) 577-600 (doi:10.1016/0550-3213(92)90424-A)
Anne E B Nielsen1, Germán Sierra, Bosonic fractional quantum Hall states on the torus from conformal field theory, J. Statistical Mechanics: Theory and Experiment, Volume 2014, April 2014 (doi:10.1088/1742-5468/2014/04/P04007)
Abhinav Deshpande, Anne E B Nielsen, Lattice Laughlin states on the torus from conformal field theory, J. Stat. Mech. (2016) 013102 (doi:10.1088/1742-5468/2016/01/013102)
Songyang Pu, J. K. Jain, Composite anyons on a torus, Phys. Rev. B 104 (2021) 115135 (arXiv:2106.15705, doi:10.1103/PhysRevB.104.115135)
Songyang Pu, Study of Fractional Quantum Hall Effect in Periodic Geometries (etda:21203sjp5650)
Hypergeometric construction on the punctured torus:
M. Crivelli, G. Felder, C. Wieczerkowski, Generalized hypergeometric functions on the torus and the adjoint representation of , Commun. Math. Phys. 154, 1–23 (1993) (doi:10.1007/BF02096829)
following the analogous discussion of the punctured sphere in:
G. Felder & C. Wieczerkowski, Topological representations of the quantum group , Comm. Math. Phys. 138 (1991) 583–605 (doi:10.1007/BF02102043)
M. Crivelli, G. Felder & C. Wieczerkowski, Topological representations of on the torus and the mapping class group, Lett Math Phys, 30 (1994) 71–85 (doi:10.1007/BF00761424)
Review:
Higher genus via sewing:
Relating - to -WZW models:
Strings on ADE-singularities:
W. Lerche, On a Boundary CFT Description of Nonperturbative N=2 Yang-Mills Theory (arXiv:hep-th/0006100, spire:528749)
W. Lerche, A. Lutken, C. Schweigert, D-Branes on ALE Spaces and the ADE Classification of Conformal Field Theories, Nucl. Phys. B622 (2002) 269-278 (arXiv:hep-th/0006247, doi:10.1016/S0550-3213%2801%2900613-7)
in D7/D3 systems:
W. Lerche, Introduction to Seiberg-Witten Theory and its Stringy Origin, Nuclear Physics B - Proceedings Supplements 55 2 (1997) 83-117 Nuclear Physics B - Proceedings Supplements, (arXiv:hep-th/9611190, doi:10.1016/S0920-5632(97)00073-X)
and AIP Conference Proceedings 419 171 (1998) (doi:10.1063/1.54690)
Keshav Dasgupta, Jihye Seo, Alisha Wissanji, F-Theory, Seiberg-Witten Curves and Dualities, J. High Energ. Phys. 2012 146 (2012) (arXiv:1107.3566, doi:10.1007/JHEP02(2012)146)
Alisha Wissanji, F-theory and M-theory perspectives on supersymmetric gauge theories in four dimensions (arXiv:1210.0863)
Shifted CS-level as quantum correction:
L. Alvarez-Gaumé, J. M. F. Labastida, A. V. Ramallo, A note on perturbative Chern-Simons theory, Nuclear Physics B 334 1 (1990) 103-124 (doi:10.1016/0550-3213(90)90658-Z)
M. A. Shifman, Four-dimension aspect of the perturbative renormalization in three-dimensional Chern-Simons theory, Nuclear Physics B 352 1 (1991) 87-112 (doi:10.1016/0550-3213(91)90130-P)
M. Asorey, F. Falceto, J. L. Lopez, G. Luzon, Universalty and Ultraviolet Regularizations of Chern-Simons Theory, Nucl.Phys. B 429 (1994) 344-374 (arXiv:hep-th/9403117, doi:10.1016/0550-3213(94)00331-9)
More review on AGT:
Mohammad Akhond, Guillermo Arias-Tamargo, Alessandro Mininno, Hao-Yu Sun, Zhengdi Sun, Yifan Wang, Fengjun Xu, Section 3 of: The Hitchhiker’s Guide to 4d N=2 Superconformal Field Theories (arXiv:2112.14764)
Yuji Tachikawa, A brief review of the 2d/4d correspondences, in: Pestun et al. Localization techniques in quantum field theories, J. Phys. A: Math. Theor. 50 4403012 (2017) (arXiv:1608.02964, doi:10.1088/1751-8121/aa5df8)
level-rank duality
In the AGT correspondence:
Fiber-base duality:
in relation to brane-number/orbi-rank duality:
Ling Bao, Elli Pomoni, Masato Taki, Futoshi Yagi, M5-branes, toric diagrams and gauge theory duality, J. High Energ. Phys. 2012 105 (2012) (arXiv:1112.5228, doi:10.1007/JHEP04(2012)105)
Kantaro Ohmori, Hiroyuki Shimizu, Yuji Tachikawa, Kazuya Yonekura, p. 19 of: 6d theories on and class S theories: part II, 2015 1–54 (2015) (arXiv:1508.00915, doi:10.1007/JHEP12(2015)131)
Babak Haghighat, Rui Sun, p. 5 of: M5 branes and Theta Functions, J. High Energ. Phys. 2019 (2019) 192 (arXiv:1811.04938, doi:10.1007/JHEP10(2019)192)
Type IIB on ADE-singularities:
Michael R. Douglas, Gregory Moore, D-branes, Quivers, and ALE Instantons (arXiv:hep-th/9603167, spire:417064)
Clifford V. Johnson, Robert C. Myers, Aspects of Type IIB Theory on ALE Spaces, Phys.Rev. D55 (1997) 6382-6393 (arXiv:hep-th/9610140, doi:10.1103/PhysRevD.55.6382)
NS5-brane T-dual to ADE-singularity:
Hirosi Ooguri, Cumrun Vafa, Two-Dimensional Black Hole and Singularities of CY Manifolds, Nucl. Phys. B463:55-72 (1996) (arXiv:hep-th/9511164, doi:10.1016/0550-3213(96)00008-9)
Ruth Gregory, Jeffrey A. Harvey, Gregory Moore, Unwinding strings and T-duality of Kaluza-Klein and H-Monopoles, Adv. Theor. Math. Phys. 1 (1997) 283-297 (arXiv:hep-th/9708086, doi:10.4310/ATMP.1997.v1.n2.a6)
B. Andreas, G. Curio, D. Lust, Section 4 of The Neveu-Schwarz Five-Brane and its Dual Geometries, JHEP 9810:022 1998 (arXiv:hep-th/9807008, doi:10.1088/1126-6708/1998/10/022)
review in:
The point that D4/NS5-branes are M5-branes on the SW-curve:
MacKay via T-duality of branes:
On anyons:
Sumathi Rao, An Anyon Primer (arXiv:hep-th/9209066)
Alexei Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321 1 (2006) 2-111 (doi:10.1016/j.aop.2005.10.005)
Sumathi Rao, Introduction to abelian and non-abelian anyons, In: Topology and Condensed Matter Physics Texts and Readings in Physical Sciences 19 Springer (2017) 399-437 (arXiv:1610.09260, doi:10.1007/978-981-10-6841-6_16)
Daniel Borcherding, Non-Abelian quasi-particles in electronic systems, Hannover 2018 (doi:10.15488/4280)
Anyon condensation:
On -anyons:
Parsa Hassan Bonderson, Sec. 5.4 of: Non-Abelian Anyons and Interferometry 2007 (pdf, doi:10.7907/5NDZ-W890)
Simon Trebst, Matthias Troyer, Zhenghan Wang, Andreas W.W. Ludwig, Sec. 4 of: A short introduction to Fibonacci anyon models, Prog. Theor. Phys. Supp. 176, 384 (2008) (arXiv:0902.3275, doi:10.1143/PTPS.176.384)
Charlotte Gils, Eddy Ardonne, Simon Trebst, David A. Huse, Andreas W. W. Ludwig, Matthias Troyer, Zhenghan Wang, Anyonic quantum spin chains: Spin-1 generalizations and topological stability, Phys. Rev. B 87 (2013) 235120 (arXiv:1303.4290, doi:10.1103/PhysRevB.87.235120)
Emil Génetay Johansen, Tapio Simula, Fibonacci anyons versus Majorana fermions – A Monte Carlo Approach to the Compilation of Braid Circuits in Anyon Models, PRX Quantum 2 010334 (2021) (arXiv:2008.10790, doi:10.1103/PRXQuantum.2.010334)
On flat K-theory:
Max Karoubi, Homologie Cyclique et K-Theorie, Asterisque 149 (1987) (numdam:AST_1987__149__1_0)
Max Karoubi, Theorie Generale des Classes Caracteristiques Secondaires, K-Theory 4 1 (1990) 55-87 (doi:10.1007/BF00534193)
John Lott, R/Z Index Theory, Communications in Analysis and Geometry 2 (1994) 279-311 (doi:10.4310/CAG.1994.v2.n2.a6, pdf)
James Simons, Dennis Sullivan, Structured vector bundles define differential K-theory, Astérisque, 321 (2008) (arXiv:0810.4935, numdam:AST_2008__321__1_0)
D-brane charge in compactly supported K-theory of flat transverse space:
Gregory Moore, Edward Witten, Self-Duality, Ramond-Ramond Fields, and K-Theory, JHEP 05 (2000) 032 (arXiv:hep-th/9912279, doi:10.1088/1126-6708/2000/05/032)
Petr Hořava, Type IIA D-Branes, K-Theory, and Matrix Theory, Adv. Theor. Math. Phys. 2 (1999) 1373-1404 (arXiv:hep-th/9812135)
Sergei Gukov, K-Theory, Reality, and Orientifolds, Commun. Math. Phys. 210 (2000) 621-639 (arXiv:hep-th/9901042, doi:10.1007/s002200050793)
Oren Bergman, Eric G. Gimon, Petr Hořava, Brane Transfer Operations and T-Duality of Non-BPS States, JHEP 9904 (1999) 010 (arXiv:hep-th/9902160, doi:10.1088/1126-6708/1999/04/010)
John H. Schwarz, TASI Lectures on Non-BPS D-Brane Systems, pp. 809-846 in: Jeffrey Harvey, Shamit Kachru, Eva Silverstein (eds.) Strings, Branes and Gravity, World Scientific 2001 (arXiv:hep-th/9908144, doi:10.1142/9789812799630_0010)
M. R. Gaberdiel, B. Stefanski Jr, Dirichlet Branes on Orbifolds, Nucl. Phys. B578:58-84, 2000 (arXiv:hep-th/9910109, doi:10.1016/S0550-3213(99)00813-5)
John H. Schwarz, Non-BPS D-Brane Systems, In: L. Baulieu , M. Green, M. Picco, P. Windey (eds.) Progress in String Theory and M-Theory, NATO Science Series (Series C: Mathematical and Physical Sciences) 564. Springer, Dordrecht (doi:10.1007/978-94-010-0852-5_5)
H. García-Compeán, W. Herrera-Suárez, B. A. Itzá-Ortiz, O. Loaiza-Brito, D-Branes in Orientifolds and Orbifolds and Kasparov KK-Theory, JHEP 0812:007, 2008 (arXiv:0809.4238, doi:10.1088/1126-6708/2008/12/007)
D-branes on group manifolds in twisted K-theory:
Stefan Fredenhagen, Volker Schomerus, Branes on Group Manifolds, Gluon Condensates, and twisted K-theory, JHEP 0104 (2001) 007 (arXiv:hep-th/0012164, doi:10.1088/1126-6708/2001/04/007)
Volker Braun, Twisted K-Theory of Lie Groups, JHEP 0403 (2004) 029 (arXiv:hep-th/0305178, doi:10.1088/1126-6708/2004/03/029)
Matthias R. Gaberdiel, Terry Gannon, D-brane charges on non-simply connected groups, JHEP 0404 (2004) 030 (arXiv:hep-th/0403011, doi:10.1088/1126-6708/2004/04/030)
On instantons as SU(2)-bundles on the 4-sphere:
On equivariant configuration spaces:
On hypergeometric construction of KZ-solutions 1-twisted de Rham cohomology of the configuration space of points in :
Precursors:
The original construction:
Vadim Schechtman?, Alexander Varchenko?, Integral representations of N-point conformal correlators in the WZW model, Max-Planck-Institut für Mathematik, (1989) Preprint MPI/89- cds:1044951
Vadim Schechtman?, Alexander Varchenko?, Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys. 20 (1990) 279–283 doi:10.1007/BF00626523
Vadim Schechtman?, Alexander Varchenko?, Arrangements of hyperplanes and Lie algebra homology, Inventiones mathematicae 106 1 (1991) 139-194 dml:143938, pdf
Proof that for rational level one obtains the WZW conformal blocks inside the KZ-solutions:
Boris Feigin?, Vadim Schechtman?, Alexander Varchenko?, On algebraic equations satisfied by correlators in Wess-Zumino-Witten models, Lett Math Phys 20 (1990) 291–297 doi:10.1007/BF00626525
Boris Feigin?, Vadim Schechtman?, Alexander Varchenko?, On algebraic equations satisfied by hypergeometric correlators in WZW models. I, Commun. Math. Phys. 163 (1994) 173–184 doi:10.1007/BF02101739
Boris Feigin?, Vadim Schechtman?, Alexander Varchenko?, On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys. 170 1 (1995) 219-247 euclid:cmp/1104272957
See also:
Boris Feigin, Edward Frenkel, Nikolai Reshetikhin, Thm. 4 of: Gaudin Model, Bethe Ansatz and Critical Level, Commun. Math. Phys. 166 (1994) 27-62 (arXiv:hep-th/9402022, doi:10.1007/BF02099300)
R. Rimányi, V. Schechtman, A. Varchenko, Conformal blocks and equivariant cohomology, Moscow Mathematical Journal 11 3 (2010) (arXiv:1007.3155, mmj:vol11-3-2011)
P. Belkale, P. Brosnan, S. Mukhopadhyay, Hyperplane arrangements and invariant theory (pdf)
Review:
Alexander Varchenko?, Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, Advanced Series in Mathematical Physics 21, World Scientific 1995 (doi:10.1142/2467)
Pavel Etingof?, Igor Frenkel?, Alexander Kirillov?, Lecture 7 in: Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations, Mathematical surveys and monographs 58, American Mathematical Society (1998) ISBN:978-1-4704-1285-2
Edward Frenkel?, David Ben-Zvi?, Section 14.3 in: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs
88, AMS 2004 (ISBN:978-1-4704-1315-6, web)
Toshiyake Kohno?, Local Systems on Configuration Spaces, KZ Connections and Conformal Blocks, Acta Math Vietnam 39, 575–598 (2014). (doi:10.1007%2Fs40306-014-0088-6, pdf)
also
Discussion as braid representations and anyons:
Toshiyake Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier 37 4 (1987) 139-160 (numdam:AIF_1987__37_4_139_0)
Ivan G Todorov, L K Hadjiivanov, Monodromy Representations of the Braid Group, Phys. At. Nucl. 64 (2001) 2059-2068 (doi:10.1134/1.1432899, cds:480345)
Xia Gu, Babak Haghighat, Yihua Liu, Ising- and Fibonacci-Anyons from KZ-equations (arXiv:2112.07195)
On inner local systems:
Yongbin Ruan, Stringy Geometry and Topology of Orbifolds (arXiv:math/0011149)
(inner local systems are introduced in Sec. 3.1)
More on K-theory:
Index theory for skew-adjoint Fredholm operators
More on twisted equivariant K-theory:
Daniel S. Freed, Michael J. Hopkins, Constantin Teleman, Loop groups and twisted K-theory I, Journal of Topology 4 4 (2011) 737-798 (arXiv:0711.1906, doi:10.1112/jtopol/jtr019)
Noe Barcenas, Mario Velasquez, The Completion Theorem in twisted equivariant K-Theory for proper and discrete actions (arXiv:1408.2404)
Alejandro Adem, José Cantarero, José Manuel Gómez, Twisted equivariant K-theory of compact Lie group actions with maximal rank isotropy, J. Math. Phys. 59 113502 (2018) (arXiv:1709.00989, doi:10.1063/1.5036647)
On infinite products of Hilbert spaces:
J. von Neumann, On infinite direct products, Compositio Mathematica, tome 6 (1939), p. 1-77 (numdam:CM_1939__6__1_0)
A. Guichardet, Tensor products of -algebras Part II. Infinite tensor products, Aarhus Universitet Lecture Notes Series 13 (1996) (pdf, pdf)
John C. Baez, Irving Ezra Segal, Zhengfang Zhou, Introduction to algebraic and constructive quantum field theory, Princeton University Press 1992 (ISBN:9780691634104, pdf)
Nik Weaver, Mathematical Quantization, Chapman and Hall/CRC 2001 (ISBN:9781584880011)
K. R. Parthasarathy, Introduction to Probability and Measure, Texts and Readings in Mathematics 33, Hindustan Book Agency 2005 (doi:10.1007/978-93-86279-27-9)
On spin chains:
Ingmar Saberi, An introduction to spin systems for mathematicians in D. Ayala, D. S. Freed, R. E. Grady: Topology and Quantum Theory in Interaction, AMS Contemporary Mathematics 718 (2018) 15-48 (ISBN:978-1-4704-4941-4, arXiv:1801.07270)
Günter Stolz, Aspects of the Mathematical Theory of Disordered Quantum Spin Chains, in H. Abdul-Rahman, R. Sims, A. Young (eds.) Analytic Trends in Mathematical Physics, Contemporary Mathematics 741 (2020) 163 (arXiv:1810.05047, doi:10.1090/conm/741)
The “fine structure” version of the Peter & Weyl theorem:
More on twisted equivariant K-theory:
and in condensed matter physics:
On projective representation theory:
Jürgen Tappe, Irreducible projective representations of finite groups, Manuscripta Math 22, 33–45 (1977) (doi:10.1007/BF01182065)
Tania-Luminiţa Costache, On irreducible projective representations of finite groups, Surveys in Mathematics and its Applications 4 (2009), 191-214 (ISSN:1842-6298)
Eduardo Monteiro Mendonça, Projective representations of groups, 2017 (pdf, pdf)
Chuangxun Cheng, A character theory for projective representations of finite groups, Linear Algebra and its Applications 469 (2015) 230-242 (doi:10.1016/j.laa.2014.11.027)
The splitting of the rationalized representation ring:
Jean-Pierre Serre, Linear Representations of Finite Groups, Springer 1977 (doi:10.1007/978-1-4684-9458-7, p.102-103)
Wolfgang Lück, Bob Oliver, Chern characters for the equivariant K-theory of proper G-CW-complexes, pages 249-262 in: Jaume Aguadé, Carles Broto, Carles Casacuberta (eds.), Cohomological Methods in Homotopy Theory, Barcelona Conference on Algebraic Topology, Bellaterra, Spain, June 4–10, 1998, Springer 2001 (doi:10.1007/978-3-0348-8312-2, p231-232 p237-238 pdf)
Guido Mislin, Alain Valette, Proper Group Actions and the Baum-Connes Conjecture, Advanced Courses in Mathematics CRM Barcelona, Springer 2003 (doi, p.22-24 pdf)
Applications of the 1-twist in twisted equivariant K-theory:
D-brane realizations of ABJM theory:
Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, Juan Maldacena, Section 3 of: superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 0810:091, 2008 (arXiv:0806.1218)
Oren Bergman, Gilad Lifschytz, Branes and massive IIA duals of 3d CFT’s, JHEP 04 (2010) 114 (arXiv:1001.0394)
Differential geometric incarnation of the derived category:
D7-branes regarded in derived category of the transverse complex curve:
Andres Collinucci, Raffaele Savelli, T-branes as branes within branes, J. High Energ. Phys. 2015 161 (2015) (arXiv:1410.4178doi:10.1007/JHEP09(2015)161)
Sebastián Schwieger, Aspects of T-branes, 2019 (hdl:10486/687647)
D7-brane charges as -reps:
D3/D7-brane systems at ADE-singularities:
Tom Banks, Michael R. Douglas, Nathan Seiberg, Probing F-theory With Branes, Phys. Lett. B387 (1996) 278-281 (arXiv:hep-th/9605199, doi:10.1016/0370-2693(96)00808-8)
Julie D. Blum, Kenneth Intriligator, Consistency Conditions for Branes at Orbifold Singularities, Nucl. Phys. B 506:223-235 (1997) (arXiv:hep-th/9705030, doi:10.1016/S0550-3213(97)00450-1)
Clifford V. Johnson, From M-theory to F-theory, with Branes, Nucl. Phys. B 507 (1997) 227-244 (arXiv:hep-th/9706155, doi:10.1016/S0550-3213(97)00550-6)
M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda, R. Marotta, Gauge theories on systems of fractional D3/D7 branes, Nucl. Phys. B621 (2002) 157-178 (arXiv:hep-th/0107057, doi:10.1016/S0550-3213(01)00568-5)
(brane configuration on p. 7)
Yuji Tachikawa, Moduli spaces of instantons on smooth ALE spaces as Higgs branches of 4d supersymmetric theories, Journal of High Energy Physics 2014 56 (2014) (arXiv:1402.4200, doi:10.1007/JHEP06(2014)056)
Benjamin Assel, Antonio Sciarappa, On Monopole Bubbling Contributions to ‘t Hooft Loops, J. High Energ. Phys. 2019 (2019) 180 (arXiv:1903.00376, doi:10.1007/JHEP05(2019)180)
(brane configuration in Sec. 2.2, p. 9)
Susha Parameswaran, Flavio Tonioni, Non-supersymmetric String Models from Anti-D3-/D7-branes in Strongly Warped Throats, Journal of High Energy Physics volume 2020, Article number: 174 (2020) (arXiv:2007.11333)
(brane config in section 3.1.2.1)
just D3s in ADE-singularities:
Duality to -branes:
Sergey A. Cherkis, Supergravity Solution for M5-brane Intersection (arXiv:hep-th/9906203, spire:502422)
Douglas J. Smith, Intersecting brane solutions in string and M-theory, Classical and Quantum Gravity 20 9 (2003) R233 (arXiv:hep-th/0210157, doi:10.1088/0264-9381/20/9/203)
(Sec. 6.3.3)
M5-branes wrapped on Riemann surfaces with punctures:
(punctures are M5/M5 intersections on a 3-brane: Sec. 3.1)
Francesco Benini, Sergio Benvenuti, Yuji Tachikawa, Webs of five-branes and superconformal field theories, JHEP 0909:052, 2009 (arXiv:0906.0359, doi:10.1088/1126-6708/2009/09/052)
Oscar Chacaltana, Jacques Distler, Yuji Tachikawa, Nilpotent orbits and codimension-two defects of 6d theories, International Journal of Modern Physics AVol. 28, No. 03n04, 1340006 (2013) (arXiv:1203.2930, doi:10.1142/S0217751X1340006X)
Expressing the AGT Liouville CFT via a WZW model:
Gaston Giribet, On AGT description of SCFT with J. High Energ. Phys. 2010, 97 (2010). (arXiv:0912.1930, doi:10.1007/JHEP01(2010)097)
Luis F. Alday, Yuji Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94:87-114 (2010) (arXiv:1005.4469, doi:10.1007/s11005-010-0422-4)
Tatsuma Nishioka, Yuji Tachikawa, Central charges of para-Liouville and Toda theories from M5-branes, Phys. Rev. D 84 046009 (2011) (arXiv:1106.1172, doi:10.1103/PhysRevD.84.046009)
Omar Foda, Nicholas Macleod, Masahide Manabe, Trevor Welsh, WZW conformal blocks from instanton partition functions on , Nucl. Phys. B, 956 (2020) 115038 (arXiv:1912.04407, doi:10.1016/j.nuclphysb.2020.115038)
The -topos over the site of Stein manifolds:
On holomorphic de Rham cohomology
review pdf
F. El Zein, Loring W. Tu, From Sheaf Cohomology to the Algebraic de Rham Theorem, Chapter Two in: E. Cattani, F. El Zein, P. A. Griffith, L. D. Trang, Hodge Theory, Mathematical Notes 49, Princeton University Press 2014, (arXiv:1302.5834, ISBN:9780691161341, pdf)
On Stein manifolds and their holomorphic De Rham cohomology:
review and generalization in:
On twisted holomorphic de Rham cohomology:
Pierre Deligne?, Section II.6 in: Equations différentielles à points singuliers réguliers, Lecture Notes in Math 163, Springer 1970 (pdf, publication.ias:355)
Anatoly Libgober, Sergey Yuzvinsky, Cohomology of local systems, Advanced Studies in Pure Mathematics 27 (2000) 169-184 (pdf, doi:10.2969/aspm/02710169)
Youming Chen, Song Yang, On the blow-up formula of twisted de Rham cohomology, Annals of Global Analysis and Geometry 56 (2019) 277–290 (arXiv:1810.09653, doi:10.1007/s10455-019-09667-8)
On universal covers of Stein manifolds being again Stein:
recalled in
On complements of hyperplanes in Stein manifolds being again Stein:
recalled in
On holomorphic vector bundles:
Indranil Biswas, Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree, Proc. Amer. Math. Soc. 126 (1998), 2827-2834 (doi:10.1090/S0002-9939-98-04429-3)
S. K. Donaldson, P. B. Kronheimer, Thm. 2.1.53 in: The geometry of four-manifolds, Clarendon Press 1997 (ISBN:9780198502692)
Johan Dupont, Richard Hain, Steven Zucker, Regulators and characteristic classes of flat bundles, in: The Arithmetic and Geometry of Algebraic Cycles, CRM Proceedings and Lecture Notes 24 AMS (2000) (arXiv:alg-geom/9202023, doi:10.1090/crmp/024)
On holomorphic-differential cohomology theory:
On holomorphic-differential K-theory:
On holomorphic Chern characters:
Cheyne Glass, Micah Miller, Thomas Tradler, Mahmoud Zeinalian, The Hodge Chern character of holomorphic connections as a map of simplicial presheaves (arXiv:1905.07674)
Varghese Mathai, Danny Stevenson, Chern character in twisted K-theory: equivariant and holomorphic cases, Commun. Math. Phys. 236 (2003) 161-186 (arXiv:hep-th/0201010)
On D-brane charge in holomorphic K-theory:
Eric R. Sharpe, D-Branes, Derived Categories, and Grothendieck Groups, Nucl. Phys. B 561 (1999) 433-450 (arXiv:hep-th/9902116, doi:10.1016/S0550-3213(99)00535-0)
E. G. Scheidegger, Section 5.3.3 in: D-branes on Calabi-Yau Spaces, 2001 (doi:10.5282/edoc.445, pdf)
On affine Lie algebras:
On modular representations from -modules:
Victor G. Kač, Dale H. Peterson, Affine Lie algebras and Hecke modular forms, Bull. Amer. Math. Soc. (N.S.) 3 3 (1980) 1057-1061 (bams:1183547694)
Victor G. Kač, Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Advances in Mathematics 53 2 (1984) 125-264 (doi:10.1016/0001-8708(84)90032-X)
Victor G. Kač, Minoru Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, PNAS 85 14 (1988) 4956-4960 (doi:10.1073/pnas.85.14.4956)
Victor G. Kač, Minuro Wakimoto, Classification of modular invariant representations of affine algebras, p. 138-177 in V. G. Kač (ed.): Infinite dimensional lie algebras and groups Advanced series in Mathematical physics 7, World Scientific 1989 (pdf, pdf cds:268092)
review:
I. G. MacDonald, Affine Lie algebras and modular forms, Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Exposé no. 577 (numdam:SB_1980-1981__23__258_0)
Victor Kac, Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Advances in Mathematics 70 2 (1988) 156-236 (doi:10.1016/0001-8708(88)90055-2, spire:275458)
A. Cappelli, C. Otzykson, J.-B. Zuber, Modular invariant partition functions in two dimensions, Nuclear Physics B 280 (1987) 445-465 (doi:10.1016/0550-3213(87)90155-6)
A. Cappelli, C. Itzykson & J. B. Zuber, The A-D-E classification of minimal and conformal invariant theories, Communications in Mathematical Physics 113 (1987) 1–26 (doi:10.1007/BF01221394)
Generalization to twisted modules, giving congruence subgroup representations:
On Kac modules:
On WZW models at fractional level:
P. Furlan, A. Ch. Ganchev, R. Paunov, V. B. Petkova, Solutions of the Knizhnik-Zamolodchikov Equation with Rational Isospins and the Reduction to the Minimal Models, Nucl. Phys. B394 (1993) 665-706 (arXiv:hep-th/9201080, doi:10.1016/0550-3213(93)90227-G)
J. L. Petersen, J. Rasmussen, M. Yu, Fusion, Crossing and Monodromy in Conformal Field Theory Based on Current Algebra with Fractional Level, Nucl. Phys. B481 (1996) 577-624 (arXiv:hep-th/9607129, doi:10.1016/S0550-3213(96)00506-8)
B. Feigin, F. Malikov, Modular functor and representation theory of at a rational level, p. 357-405 in: Loday, Stasheff, Voronov (eds.) Operads: Proceedings of Renaissance Conferences, Contemporary Mathematics 202 , AMS 1997 (arXiv:q-alg/9511011, ams:conm-202)
Thomas Creutzig, David Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models I, Nuclear Physics B 865 1 (2012) 83-114 (arXiv:1205.6513, doi:10.1016/j.nuclphysb.2012.07.018)
Thomas Creutzig, David Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models II, Nuclear Physics B 875 2 (2013) 423-458 (arXiv:1306.4388, doi:10.1016/j.nuclphysb.2013.07.008)
Kazuya Kawasetsu, David Ridout, Relaxed highest-weight modules I: rank 1 cases, Commun. Math. Phys. 368 (2019) 627–663 (arXiv:1803.01989, doi:10.1007/s00220-019-03305-x)
Kazuya Kawasetsu, David Ridout, Relaxed highest-weight modules II: classifications for affine vertex algebras, Communications in Contemporary Mathematics (2022) (arXiv:1906.02935, doi:10.1142/S0219199721500371)
reviewed in:
David Ridout, Fractional Level WZW Models as Logarithmic CFTs, 2010 (pdf)
David Ridout, Fractional-level WZW models, 2020 (pdf)
More on basic CFT:
Topics in conformal field theory (pdf)
A. Beauville, Conformal blocks, fusion rules and the Verlinde formula, in: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Israel Mathematics Conference Proceedings 9 (1996) (arXiv:alg-geom/9405001, ams:imcp-9)
Yavuz Nutku, Cihan Saclioglu, Teoman Turgut (eds.), Conformal Field Theory – New Non-perturbative Methods In String And Field Theory, CRC Press 2000 (doi:10.1201/9780429502873)
chapter 6, pages 322-398:
Mark Walton, Affine Kac-Moody Algebras and the Wess-Zumino-Witten Model (doi:10.1201/9780429502873-13, arXiv:hep-th/9911187)
On logarithmic CFT:
On the type IIB axio-dilaton as a fuzzy dark matter candidate:
SV-construction:
Background results:
Peter Orlik, Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent Math 56, 167–189 (1980) (doi:10.1007/BF01392549)
Kazuhiko Aomoto, Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan 39 2 (1987) 191-208 (doi:10.2969/jmsj/03920191)
Hélène Esnault, Vadim Schechtman, Eckart Viehweg, Cohomology of local systems on the complement of hyperplanes, Inventiones mathematicae 109.1 (1992): 557-561 (pdf, pdf)
V. Schechtman, H. Terao, A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, Journal of Pure and Applied Algebra 100 1–3 (1995) 93-102 (arXiv:hep-th/9411083, doi:10.1016/0022-4049(95)00014-N)
Review of this background:
Precursor constructions:
Vl. S. Dotsenko, V. A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nuclear Physics B Volume 240, Issue 3, 15 October 1984, Pages 312-348 (doi:10.1016/0550-3213(84)90269-4)
P. Christe, R. Flume, The four-point correlations of all primary operators of the conformally invariant -model with Wess-Zumino term, Nuclear Physics B 282 (1987) 466-494 (doi:10.1016/0550-3213(87)90693-6)
The original SV-construction:
Vadim V. Schechtman, Alexander N. Varchenko, Integral representations of N-point conformal correlators in the WZW model, Max-Planck-Institut für Mathematik, August 1989, Preprint MPI/89- (cds:1044951)
Vadim V. Schechtman, Alexander N. Varchenko, Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys. 20 (1990) 279–283 (doi:10.1007/BF00626523)
Vadim V. Schechtman, Alexander N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Inventiones mathematicae 106 1 (1991) 139-194 (dml:143938, pdf)
with an independent discussion for in:
Proof that for rational levels the construction yields WZW conformal blocks inside the KZ-solutions:
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by correlators in Wess-Zumino-Witten models, Lett Math Phys 20 (1990) 291–297 (doi:10.1007/BF00626525)
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. I, Commun.Math. Phys. 163 (1994) 173–184 (doi:10.1007/BF02101739)
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys. 170(1): 219-247 (1995) (arxiv:hep-th/9407010, euclid:cmp/1104272957)
See also:
Boris Feigin, Edward Frenkel, Nikolai Reshetikhin, Thm. 4 of: Gaudin Model, Bethe Ansatz and Critical Level, Commun. Math. Phys. 166 (1994) 27-62 (arXiv:hep-th/9402022, doi:10.1007/BF02099300)
R. Rimányi, V. Schechtman, A. Varchenko, Conformal blocks and equivariant cohomology, Moscow Mathematical Journal 11 3 (2010) (arXiv:1007.3155, mmj:vol11-3-2011)
P. Belkale, P. Brosnan, S. Mukhopadhyay, Hyperplane arrangements and invariant theory (pdf)
Vadim Schechtman, Alexander Varchenko, Rational differential forms on line and singular vectors in Verma modules over , Mosc. Math. J. 17 (2017), 787–80 (arXiv:1511.09014, mmj:2017-017-004/2017-017-004-011)
Alexey Slinkin, Alexander Varchenko, Twisted de Rham Complex on Line and Singular Vectors in sl2^ Verma Modules, SIGMA 15 (2019), 075 (arXiv:1812.09791, doi:10.3842/SIGMA.2019.075)
Review:
Alexander Varchenko, Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, Advanced Series in Mathematical Physics 21, World Scientific 1995 (doi:10.1142/2467)
P. I. Etingof, Igor Frenkel, Alexander A Kirillov, Lecture 7 in: Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations, Mathematical surveys and monographs 58, American Mathematical Society (1998)
Edward Frenkel, David Ben-Zvi, Section 14.3 in: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs 88, AMS 2004 (ISBN:978-1-4704-1315-6, web)
Toshiyake Kohno, Local Systems on Configuration Spaces, KZ Connections and Conformal Blocks, Acta Math Vietnam 39, 575–598 (2014). (doi:10.1007%2Fs40306-014-0088-6, pdf)
also
Interpretation as anyons:
Gregory Moore, Nicholas Read, Nonabelions in the fractional quantum hall effect, Nuclear Physics B 360 2–3 (1991) 362-396 (doi:10.1016/0550-3213(91)90407-O, pdf)
Ivan G Todorov, L K Hadjiivanov, Monodromy Representations of the Braid Group, Phys. At. Nucl. 64 (2001) 2059-2068 (doi:10.1134/1.1432899, cds:480345)
Benoit Estienne, Vincent Pasquier, Raoul Santachiara, Didina Serban, Conformal blocks in Virasoro and W theories: duality and the Calogero-Sutherland model, Nuclear Physics B 860 3 (2012) 377-420 (arXiv:1110.1101, doi:10.1016/j.nuclphysb.2012.03.007)
Lei Su, Fractional Quantum Hall States with Conformal Field Theories, Chicago 2018 (pdf, pdf)
Elias Kokkas, Aaron Bagheri, Zhenghan Wang, George Siopsis, Quantum Computing with Two-dimensional Conformal Field Theories (arXiv:2112.06144)
Xia Gu, Babak Haghighat, Yihua Liu, Ising- and Fibonacci-Anyons from KZ-equations (arXiv:2112.07195)
Proposals for embedding into M-theory:
Last revised on May 13, 2022 at 18:40:43. See the history of this page for a list of all contributions to it.