homotopy theory, (∞,1)-category theory, homotopy type theory
flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed…
models: topological, simplicial, localic, …
see also algebraic topology
Introductions
Definitions
Paths and cylinders
Homotopy groups
Basic facts
Theorems
model category, model $\infty$-category
Definitions
Morphisms
Universal constructions
Refinements
Producing new model structures
Presentation of $(\infty,1)$-categories
Model structures
for $\infty$-groupoids
on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
for equivariant $\infty$-groupoids
for rational $\infty$-groupoids
for rational equivariant $\infty$-groupoids
for $n$-groupoids
for $\infty$-groups
for $\infty$-algebras
general $\infty$-algebras
specific $\infty$-algebras
for stable/spectrum objects
for $(\infty,1)$-categories
for stable $(\infty,1)$-categories
for $(\infty,1)$-operads
for $(n,r)$-categories
for $(\infty,1)$-sheaves / $\infty$-stacks
A path space object in homotopy theory is an object in a homotopical category that behaves for many purposes as the topological path space does in topological homotopy theory.
(path space object)
For $\mathcal{C}$ a category with weak equivalences and with binary products, a path space object of/for an object $X$ of $\mathcal{C}$ is a factorization of the diagonal morphism $X \stackrel{(Id, Id)}{\to} X \times X$ into the product as
such that $s$ is a weak equivalence (Quillen 1967, §I.1).
Moreover (Dwyer & Spalinski 1995, §4.12):
If $\mathcal{C}$ in addition has the structure of a fibration category then one speaks, furthermore, of a good path space object if $(d_0,d_1)$ is a fibration.
If $\mathcal{C}$ furthermore has the structure of a model category then one speaks of a very good path space object if $(d_0,d_1)$ is a fibration and $s$ is a cofibration (hence an acyclic cofibration).
a (generalised) element of $X^I$ as a path in $X$;
$d_0, d_1$ as the maps that send a path to its start- or endpoint, respectivelyl
$s$ as the map that sends a point to the path constant on that point.
In any model category, the factoization axioms applied to the diagonal maps immediately imply that every object has a path space object, and in fact a “very good” one. (See below.)
The very good path space objects in locally cartesian closed model categories serve as categorical semantics for the identity types in dependent type theory (homotopy type theory).
In the presence of a (good, very good) interval object
the exponential objects of the form $X^I$ are (good, very good) path space objects (at least for the evident corresponding definition of “interval object”).
In particular, in a convenient category of topological spaces, with $I = [0,1]$ the standard closed interval, the mapping space $X^{[0,1]}$ is the standard path space and is a path object in the general sense of Def. .
If $C$ is a model category then the factorization axiom ensures that for every object $X \in C$ there is a factorization of the diagonal
with the additional property that $X^I \to X \times X$ is a fibration.
If $X$ itself is fibrant, then the projections $X \times X \to X$ are fibrations and moreover by 2-out-of-3 applied to the diagram
are themselves weak equivalences $X^I \stackrel{\simeq}{\to} X$. This is a key property that implies the factorization lemma.
If moreover the small object argument applies in the model category $C$, then such factorizations, and hence path objects, may be chosen functorially: such that for each morphism $X \to Y$ the factorizations fit into a commuting diagram
If $C$ is a simplicial model category, then the powering over sSet can be used to explicitly construct functorial path objects for fibrant objects $X$: define $X \to X^I \to X \times X$ to be the powering of $X$ by the morphisms
in $sSet_{Quillen}$. Notice that the first morphism is a cofibration and the second a weak equivalence in the standard model structure on simplicial sets and that all objects are cofibrant.
Since by the axioms of an enriched model category the powering functor
sends cofibrations and acyclic cofibrations in the first argument to fibrations and acyclic fibrations inif the second argument is fibrant, and since this implies by the factorization lemma that it then also preserves weak equivalences between cofibrant objects, it follows that $X^{\Delta[1]}$ is indeed a path object with the extra property that also the two morphisms $X^{\Delta[1]} \to X$ are acyclic fibrations.
Path objects are used to define a notion of right homotopy between morphisms in a category. Thus they capture aspects of higher category theory in a $1$-categorical context.
From a path space object may be derived loop space objects.
The general definition in model categories is due to:
The terminology of “good” and “very good” path space objects appears in:
William Dwyer, Jan Spalinski, §4.12 in: Homotopy theories and model categories (pdf)
in: I. M. James, Handbook of Algebraic Topology, North Holland 1995 (ISBN:9780080532981, doi:10.1016/B978-0-444-81779-2.X5000-7)
Lecture notes:
Last revised on September 27, 2022 at 04:07:11. See the history of this page for a list of all contributions to it.