basics
Examples
(…)
The original article:
Early developments:
Walter Kohn: Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian, Phys. Rev. 115 (1959) 1460 [doi:10.1103/PhysRev.115.1460]
Gregory H. Wannier: Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field, Phys. Rev. 117 (1960) 432 [doi:10.1103/PhysRev.117.432]
Textbook account in mathematical physics:
Textbook account in semiconductor-theory:
Review in the context of topological phases of matter:
Jérôme Cayssol, Jean-Noël Fuchs, Section IV.B of: Topological and geometrical aspects of band theory, J. Phys. Mater. 4 (2021) 034007 [arXiv:2012.11941, doi:10.1088/2515-7639/abf0b5]
Alexander S. Sergeev, Section 5.1.3 in: Topological insulators and geometry of vector bundles, SciPost Physics Lecture Notes 67 (2023) [arXiv:2011.05004, doi:10.21468/SciPostPhysLectNotes.67]
See also:
Wikipedia: Bloch’s theorem
Wikipedia: Crystal momentum
Further discussion:
Variant for hyperbolic spaces:
Joseph Maciejko, Steven Rayan, Hyperbolic band theory, Science Advances 7 36 (2021) [doi:10.1126/sciadv.abe9170]
Adil Attar, Igor Boettcher, Selberg trace formula in hyperbolic band theory, Phys. Rev. E 106 034114 (2022) [arXiv:2201.06587, doi:10.1103/PhysRevE.106.034114]
Yuejin Guo, Jean-Marc Langlois and William A. Goddard , Electronic Structure and Valence-Bond Band Structure of Cuprate Superconducting Materials, New Series, 239 4842 (1988) 896-899 jstor:1700316
Jingsan Hu, Jianfei Gu, Weiyi Zhang, Bloch’s band structures of a pair of interacting electrons in simple one- and two-dimensional lattices, Physics Letters A 414 (2021) 127634 doi:10.1016/j.physleta.2021.127634
Last revised on September 2, 2025 at 18:21:13. See the history of this page for a list of all contributions to it.