nLab Leray-Hirsch theorem

Contents

Context

Bundles

bundles

Context

Classes of bundles

Universal bundles

Presentations

Examples

Constructions

Cohomology

cohomology

Special and general types

Special notions

Variants

Extra structure

Operations

Theorems

Contents

Idea

The Leray-Hirsch theorem states sufficient fiberwise condition for the ordinary cohomology of the total space of a fiber bundle with coefficients in a commutative ring to be free module over the cohomology ring of the base space.

An important consequence is the Thom isomorphism.

Statement

Let

(1)F ι Y p X \array{ F &\stackrel{\iota}{\hookrightarrow}& Y \\ && \downarrow^{\mathrlap{p}} \\ && X }

be an FF-fiber bundle (in Top) of topological spaces that admit the structure of finite CW-complexes.

In ordinary cohomology

Let RR be a commutative ring and write H (;R)H^\bullet(-;\,R) for the cohomology rings of ordinary cohomology with coefficients in RR.

If there exists

such that

  • for each point xXx \in X the restriction (pullback along ι\iota) of the α i\alpha_i to the fiber F xYF_x \hookrightarrow Y

    1. is RR-linearly independent

    2. their RR-linear span is isomorphic to the cohomology group H (F,R)H^\bullet(F,R) of the fiber

      H (F;R)Rι x *α 1,,ι x *α nRMod H^\bullet(F;\, R) \simeq R \langle \iota_x^\ast \alpha_1, \cdots, \iota_x^\ast \alpha_n \rangle \;\;\;\; \in R Mod

    (i.e. a free module over RR)

then:

  1. the {α 1,,α n}\{\alpha_1, \cdots, \alpha_n\} themselves are H (X;R)H^\bullet(X;\,R)-linearly independent,

  2. their H (X;R)H^\bullet(X;\,R)-linear span gives the cohomology group of the total space YY:

    H (Y;R)H (X;R)α 1,,α nH (X;R)Mod, H^\bullet(Y;\,R) \;\simeq\; H^\bullet(X;\,R) \langle \alpha_1, \cdots,\alpha_n \rangle \;\;\;\;\; \in \; H^\bullet(X;\, R) Mod \,,

    via the isomorphism

    H (X;R) RH (F;R)H (Y;R) H^\bullet(X;\, R) \otimes_R H^\bullet(F;\, R) \stackrel{\simeq}{\longrightarrow} H^\bullet(Y;\, R)

    given by pulling back classes from the base space and there forming their cup product with these generators on the total space:

    i,jc iι *(α j)i,jp *(c i)α j. \underset{i,j}{\sum} c_i \otimes \iota^\ast(\alpha_j) \mapsto \underset{i,j}{\sum} p^\ast(c_i) \cup \alpha_j \,.


In generalized cohomology

The statement generalizes verbatim from ordinary cohomology to any multiplicative Whitehead-generalized cohomology theory EE (Conner-Floyd 66, theorem 7,4, attributed there to Albrecht Dold, review in Tamaki-Kono 06, Section 3.1):

Let EE be a multiplicative Whitehead-generalized cohomology theory and write

If there exists

  • a finite set of elements

    (2)α iE (Y),i{1,2,,n} \alpha_i \;\in\; E^\bullet(Y)\;,\;\;\;\; i \in \{1, 2, \cdots, n\}

    in the ordinary cohomology of the total space YY,

such that

  • for each point xXx \in X the restriction (pullback along ι\iota) of the α i\alpha_i to the fiber F xYF_x \hookrightarrow Y

    1. is E E_{-\bullet}-linearly independent

    2. their E E_{-\bullet}-linear span is isomorphic to the cohomology group E (F)E^\bullet(F) of the fiber

      (3)E (F;)E ι x *α 1,,ι x *α nE Mod E_{-\bullet}(F;) \simeq E_{-\bullet} \langle \iota_x^\ast \alpha_1, \cdots, \iota_x^\ast \alpha_n \rangle \;\;\;\; \in E_{-\bullet} Mod

    (i.e. a free module over E E_{-\bullet})

then:

  1. the {α 1,,α n}\{\alpha_1, \cdots, \alpha_n\} themselves are E (X)E^\bullet(X)-linearly independent,

  2. their E (X)E^\bullet(X)-linear span gives the cohomology group of the total space YY:

    E (Y)E (X)α 1,,α nE (X)Mod, E^\bullet(Y) \;\simeq\; E^\bullet(X) \langle \alpha_1, \cdots,\alpha_n \rangle \;\;\;\;\; \in \; E^\bullet(X) Mod \,,

    via the isomorphism

    E (X) E E (F)E (Y) E^\bullet(X) \otimes_{E_{-\bullet}} E^\bullet(F) \stackrel{\simeq}{\longrightarrow} E^\bullet(Y)

    given by pulling back classes from the base space and there forming their cup product with these generators on the total space:

    i,jc iι *(α j)i,jp *(c i)α j. \underset{i,j}{\sum} c_i \otimes \iota^\ast(\alpha_j) \mapsto \underset{i,j}{\sum} p^\ast(c_i) \cup \alpha_j \,.

Examples

Complex-oriented cohomology of the twistor fibration

Let EE be a Whitehead-generalized cohomology theory equipped with complex orientation in the form of a first Conner-Floyd-Chern class

c 1 EE˜ 2(P )E˜ 2(P n). c^E_1 \;\in\; {\widetilde E}{}^2\big( \mathbb{C}P^\infty \big) \longrightarrow {\widetilde E}{}^2\big( \mathbb{C}P^n \big) \,.

Then, for nn \in \mathbb{N}, the EE-cohomology ring of the complex projective space P n\mathbb{C}P^n is (see there)

E (P n)E [c 1 E]/(c 1 E) n+1E Algebras, E^\bullet \big( \mathbb{C}P^n \big) \;\simeq\; E_{-\bullet} \big[ c^E_1 \big] \big/ \big( c^E_1 \big)^{n+1} \;\;\; \in \; E_{-\bullet} Algebras \,,

whence the cohomology group is

(4)E (P n)E 1,c 1 E,(c 1 E) 2,,(c 1 E) nE Modules. E^\bullet \big( \mathbb{C}P^n \big) \;\simeq\; E_{-\bullet} \big\langle 1,\, c^E_1,\, \big(c^E_1\big)^2,\, \cdots ,\, \big(c^E_1\big)^n \big\rangle \;\;\; \in \; E_{-\bullet} Modules \,.

For each n=2k+1n = 2 k + 1 these are Riemann sphere ×/ ×=P 1\mathbb{H}^\times/\mathbb{C}^\times = \mathbb{C}P^1-fiber bundles

P 1 2k+1 = ( 2k+2{0})/ × v ×v × P k = ( k+1{0})/ × \array{ \mathbb{C}P^1 & \longrightarrow & \mathbb{C}^{2k+1} & = & \big( \mathbb{C}^{2k+2} \setminus \{0\} \big) \big/ \mathbb{C}^\times \\ && \big\downarrow && \big\downarrow {}^{ \mathrlap{ v \cdot \mathbb{C}^\times \mapsto v \cdot \mathbb{H}^\times } } \\ && \mathbb{H}P^k & = & \big( \mathbb{H}^{k+1} \setminus \{0\} \big) \big/ \mathbb{H}^\times }

over quaternionic projective space P k\mathbb{H}P^{k}, whose fiber-inclusion is (homotopic to) the canonical inclusion P 1P n\mathbb{C}P^1 \hookrightarrow \mathbb{C}P^n (see there).

E.g. for k=1k = 1 this is also known as the twistor fibration; while for k=k = \infty this is the fibration of classifying spaces

SU(2)/U(1) BU(1) B(zdiag(z,z *)) BSU(2). \array{ SU(2)/\mathrm{U}(1) &\longrightarrow& B \mathrm{U}(1) \\ && \big\downarrow {}^{\mathrlap{ B\big( z \mapsto diag(z,z^\ast) \big) }} \\ && B SU(2) \,. }

Therefore, by (4), the assumption (3) of the EE-Leray-Hirsch theorem (above) is met if we take the classes (2) to be the cup powers (c 1 E) n(c^E_1)^n. Now the EE-Leray-Hirsch theorem says that:

References

For ordinary cohomology

Review of the theorem for ordinary cohomology:

For generalized cohomology

Discussion for Whitehead-generalized multiplicative cohomology theories:

Last revised on January 23, 2021 at 09:28:23. See the history of this page for a list of all contributions to it.