Contents
Context
Bundles
bundles
covering space
retractive space
fiber bundle , fiber ∞-bundle
numerable bundle
principal bundle , principal ∞-bundle
associated bundle , associated ∞-bundle
vector bundle , 2-vector bundle , (∞,1)-vector bundle
real , complex /holomorphic , quaternionic
topological , differentiable , algebraic
with connection
bundle of spectra
natural bundle
equivariant bundle
Linear algebra
homotopy theory , (∞,1)-category theory , homotopy type theory
flavors: stable , equivariant , rational , p-adic , proper , geometric , cohesive , directed …
models: topological , simplicial , localic , …
see also algebraic topology
Introductions
Definitions
Paths and cylinders
Homotopy groups
Basic facts
Theorems
Contents
Idea
This entry is concerned with categories VectBund VectBund of vector bundles whose morphisms are allowed to cover non-trivial maps between their base spaces.
This means that after choosing a ground field and an ambient category of spaces (e.g. Sets TopologicalSpaces , SmoothManifolds , etc.):
the objects of VectBund VectBund are vector bundles over any base space B B in the ambient category, which we shall denote like this:
[ E ↓ B ]
\left[
\array{
E
\\
\big\downarrow
\\
B
}
\right]
the morphisms of VectBund VectBund are commuting squares (in the ambient category of spaces) of the form
E ⟶ ϕ E ′ ↓ ↓ B ⟶ f B ′
\array{
E &\overset{\phi}{\longrightarrow}& E'
\\
\big\downarrow && \big\downarrow
\\
B &\underset{f}{\longrightarrow}& B'
}
which are fiber -wise linear maps .
Notice here that given the base map f f , such a diagram is equivalent to a homomorphism of vector bundles over B B from E E into the pullback vector bundle f * E ′ f^\ast E' , which we may denote by the same symbol ϕ \phi :
E ⟶ ϕ f * E ′ ↘ ↙ B
\array{
E && \overset{\phi}{\longrightarrow} && f^\ast E'
\\
& \searrow && \swarrow
\\
&& B
}
Accordingly, for each base space B B there is a full subcategory -inclusion
VectBund ( B ) ↪ − − VectBund
VectBund(B)
\xhookrightarrow{\phantom{--}}
VectBund
of the category VectBund(B) of vector bundles over B B ,
Properties
Bireflective inclusion of zero-bundles
The construction which to any base space B B assigns the zero-vector bundle over B B constitutes a bireflective subcategory -inclusion (see there ) of the category of base spaces into that over vector bundles over these base spaces.
Closed monoidal structures
For a fixed base space B B , the monoidal category -structures on
VectBund B
VectBund_B
are well known, given fiber -wise by the respective structures on VectorSpaces :
But analogous – if subtly different – monoidal structures exist on the total category VectBund VectBund , discussed in the following:
In discussing this now, we (have to and want to) assume that the ambient category of TopologicalSpaces is itself cartesian closed (a “convenient category of topological spaces ”), such as that of compactly generated topological spaces or of D-topological spaces .
Cartesian monoidal structure
The cartesian product in VectBund VectBund is readily checked to be the “external direct sum”, namely the result of pulling back the two vector bundles to the product space of their base spaces along the projection maps
B × B ′ pr B ↙ ↘ pr B ′ B B ′
\array{
&&
B \times B'
\\
& \mathllap{ {}^{pr_{B}} }\swarrow
&&
\searrow \mathrlap{ {}^{ pr_{B'} } }
\\
B && && B'
}
and then forming the direct sum of vector bundles there:
(1) [ E ↓ B ] × [ E ′ ↓ B ′ ] ≃ [ ( pr B ) * E ⊕ ( pr B ′ ) * E ′ ↓ B × B ′ ]
\left[
\begin{array}{c}
E
\\
\big\downarrow
\\
B
\end{array}
\right]
\times
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\;\;\simeq\;\;
\left[
\begin{array}{c}
(pr_{B})^\ast E
\oplus
(pr_{B'})^\ast {E'}
\\
\big\downarrow
\\
B \times B'
\end{array}
\right]
From this one finds that the cartesian mapping space (internal hom )
Maps ( − , − ) : VectBund op × VectBund ⟶ VectBund
Maps(-,-)
\;\colon\;
VectBund^{op}
\times
VectBund
\longrightarrow
VectBund
is given by forming the vector bundle whose base is the space of vector bundle homomorphisms ϕ \phi covering maps of base spaces f f , and whose fiber over ( f , ϕ ) (f,\phi) is (independent of ϕ \phi and) given by the vector -space of sections Γ B ( − ) \Gamma_B(-) of the pullback vector bundle f * E ′ f^\ast E' of the codomain bundle E ′ E' along f f :
Maps ( [ E ↓ B ] , [ E ′ ↓ B ′ ] ) ≃ [ ( f , ϕ ) ↦ Γ B ( f * E ′ ) ↓ { f : B → B ′ , ϕ : E → lin / B f * E ′ } ]
Maps
\left(
\left[
\begin{array}{c}
E
\\
\big\downarrow
\\
B
\end{array}
\right]
\;,\;\;
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\right)
\;\;\simeq\;\;
\left[
\begin{array}{c}
(f,\phi)
\mapsto
\Gamma_B\big(f^\ast E'\big)
\\
\big\downarrow
\\
\left\{
\array{
f \colon B \to B',
\\
\phi
\colon E \underset{lin/B}{\to} f^\ast E'
}
\;\;
\right\}
\end{array}
\right]
Namely, one checks the defining hom-isomorphism
Hom ( − , Map ( − , − ) ) ≃ Hom ( − × − , − )
Hom
\big(
-
,\,
Map(-,-)
\big)
\;\;\simeq\;\;
Hom
\big(
- \times -
,\,
-
\big)
by testing it on vector bundles over the point space (ignoring the topology for the moment) and using (1) on the right:
Hom ( [ V ↓ * ] , Maps ( [ E ↓ B ] , [ E ′ ↓ B ′ ] ) ) ⟶ ∼ ( v ↦ ( ( f , ϕ ) , σ v ) ) ↦ ( f , ( ϕ + σ ( − ) ) ) Hom ( [ E ⊕ V ↓ B ] , [ E ′ ↓ B ′ ] )
Hom
\left(
\left[
\begin{array}{c}
V
\\
\big\downarrow
\\
\ast
\end{array}
\right]
\;,\;\;
Maps
\left(
\left[
\begin{array}{c}
E
\\
\big\downarrow
\\
B
\end{array}
\right]
\;,\;\;
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\right)
\right)
\;\;
\underoverset
{\sim}
{
\Big(
v
\mapsto
\big(
(f,\phi)
,
\sigma_v
\big)
\Big)
\;\mapsto\;
\big(f, (\phi + \sigma_{(-)}) \big)
}{\longrightarrow}
\;\;
Hom
\left(
\left[
\begin{array}{c}
E \oplus V
\\
\big\downarrow
\\
B
\end{array}
\right]
\;,\;\;
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\right)
Tensor monoidal structure
Consider now the symmetric monoidal structure on VectBund VectBund given by the external tensor product of vector bundles
⊗ : VectBund × VectBund ⟶ VectBund
\otimes
\;\colon\;
VectBund \times VectBund
\longrightarrow
VectBund
which itself is constructed by first pulling back both bundles to the product space of their base spaces, and then forming their tensor product of vector bundles there:
(2) [ E ↓ B ] ⊗ [ E ′ ↓ B ′ ] ≔ [ ( pr B ) * E ⊗ ( pr B ′ ) * E ′ ↓ B × B ′ ]
\left[
\begin{array}{c}
E
\\
\big\downarrow
\\
B
\end{array}
\right]
\otimes
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\;\;\coloneqq\;\;
\left[
\begin{array}{c}
(pr_{B})^\ast E
\otimes
(pr_{B'})^\ast {E'}
\\
\big\downarrow
\\
B \times B'
\end{array}
\right]
The corresponding internal hom
LMaps : VectBund op × VectBund ⟶ VectBund
LMaps
\;\colon\;
VectBund^{op} \times VectBund
\longrightarrow
VectBund
forms the vector bundle whose base space is the mapping space of base spaces, and whose fiber over f : B → B ′ f \colon B \to B' is the vector space [ E , f * E ′ ] B [E, f^\ast E']_B of vector bundle homomorphisms E → f * E ′ E \to f^\ast E' over B B :
LMaps ( [ E ↓ B ] , [ E ′ ↓ B ′ ] ) ≔ [ f ↦ [ E , f * E ′ ] B ↓ { f : B → B ′ } ]
LMaps
\left(
\left[
\begin{array}{c}
E
\\
\big\downarrow
\\
B
\end{array}
\right]
\;,\;\;
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\right)
\;\;\coloneqq\;\;
\left[
\begin{array}{c}
f
\mapsto
\big[E, f^\ast E'\big]_B
\\
\big\downarrow
\\
\left\{
\array{
f \colon B \to B'
}
\;\;
\right\}
\end{array}
\right]
To see this, one checks the required hom-isomorphism
Hom ( − , LMap ( − , − ) ) ≃ Hom ( − ⊗ − , − )
Hom
\big(
-
,\,
LMap(-,-)
\big)
\;\;\simeq\;\;
Hom
\big(
- \otimes -
,\,
-
\big)
over the point, now using (2) on the right:
Hom ( [ V ↓ * ] , LMaps ( [ E ↓ B ] , [ E ′ ↓ B ′ ] ) ) ⟶ ∼ ( v ↦ ( f , σ v ) ) ↦ ( f , σ ( − ) ) Hom ( [ E ⊗ V ↓ B ] , [ E ′ ↓ B ′ ] )
Hom
\left(
\left[
\begin{array}{c}
V
\\
\big\downarrow
\\
\ast
\end{array}
\right]
\;,\;\;
LMaps
\left(
\left[
\begin{array}{c}
E
\\
\big\downarrow
\\
B
\end{array}
\right]
\;,\;\;
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\right)
\right)
\;\;
\underoverset
{\sim}
{
\Big(
v
\mapsto
\big(f, \sigma_v\big)
\Big)
\;\mapsto\;
\big(f, \sigma_{(-)} \big)
}{\longrightarrow}
\;\;
Hom
\left(
\left[
\begin{array}{c}
E \otimes V
\\
\big\downarrow
\\
B
\end{array}
\right]
\;,\;\;
\left[
\begin{array}{c}
E'
\\
\big\downarrow
\\
B'
\end{array}
\right]
\right)
Distributive monoidal structure
With respect to the coproduct and the external tensor product of vector bundles , VectBund VectBund is a distributive monoidal category . We spell this out in detail for the case of discrete base spaces (sets):
Definition
The “external ” tensor product on
Vect Set
Vect_{Set}
is the functor
⊠ : Vect Set × Vect Set ⟶ Vect Set
\boxtimes
\,\colon\,
Vect_{Set} \times Vect_{Set}
\longrightarrow
Vect_{Set}
given by
( 𝒱 ( − ) : S → Vect ) ⊠ ( 𝒱 ′ ( − ) : S ′ → Vect ) ≔ ( S × S ′ ⟶ Vect ( s , s ′ ) ↦ 𝒱 s ⊗ 𝒱 ′ s ′ ) .
\big(
\mathcal{V}_{(-)} \,\colon\, S \to \Vect
\big)
\,\boxtimes\,
\big(
\mathcal{V}'_{(-)} \,\colon\, S' \to \Vect
\big)
\;\;
\coloneqq
\;\;
\left(
\array{
S \times S' &\longrightarrow& \Vect
\\
(s, s')
&\mapsto&
\mathcal{V}_s \otimes \mathcal{V}'_{s'}
}
\right)
\mathrlap{\,.}
Proposition
The coproduct in
Vect Set
Vect_{Set}
is given by disjoint union of bundles :
( 𝒱 ( − ) ( 1 ) : S 1 → Vect ) ⊔ ( 𝒱 ( − ) ( 1 ) : S 2 → Vect ) ≃ ( S 1 ⊔ S 2 ⟶ Vect s i ↦ 𝒱 s i ( i ) )
\big(
\mathcal{V}^{(1)}_{(-)} \,\colon\, S_1 \to \Vect
\big)
\;
\sqcup
\;
\big(
\mathcal{V}^{(1)}_{(-)} \,\colon\, S_2 \to \Vect
\big)
\;\;
\simeq
\;\;
\left(
\array{
S_1 \sqcup S_2 &\longrightarrow& \Vect
\\
s_i &\mapsto& \mathcal{V}^{(i)}_{s_i}
}
\right)
Proposition
The external tensor product ⊠ \boxtimes (Def. ) distributes over the coproduct (Prop. ):
ℰ ⊠ ( 𝒱 ( 1 ) ⊔ 𝒱 ( 2 ) ) ≃ ( ℰ ⊠ 𝒱 ( 1 ) ) ⊔ ( ℰ ⊠ 𝒱 ( 2 ) )
\mathcal{E} \boxtimes ( \mathcal{V}^{(1)} \sqcup \mathcal{V}^{(2)})
\;\simeq\;
\big(
\mathcal{E} \boxtimes \mathcal{V}^{(1)}
\big)
\,\sqcup\,
\big(
\mathcal{E} \boxtimes \mathcal{V}^{(2)}
\big)
and hence gives a distributive monoidal category :
( Vect Set , ⊔ , ⊠ ) ∈ DistMonCat .
\big(
Vect_{Set}
,
\sqcup
,
\boxtimes
\big)
\;\in\;
DistMonCat
\mathrlap{\,.}
Proof
Unwinding the above definitions and using that Set is a distributive category , we have the following sequence of natural isomorphisms :
ℰ ⊠ ( 𝒱 ( 1 ) ⊔ 𝒱 ( 2 ) ) ≡ ( ℰ ( − ) : S E → Vect ) ⊠ ( ( 𝒱 ( − ) ( 1 ) : S 1 → Vect ) ⊔ ( 𝒱 ( − ) ( 2 ) : S 2 → Vect ) ) ≃ ( ℰ ( − ) : S E → Vect ) ⊠ ( S 1 ⊔ S 2 ⟶ Vect s i ↦ 𝒱 s i ( i ) ) ≃ ( S E × ( S 1 ⊔ S 2 ) ⟶ Vect ( s E , s i ) ↦ ℰ s E ⊗ 𝒱 s i ( i ) ) ≃ ( ( S E × S 1 ) ⊔ ( S 2 × S 2 ) ⟶ Vect ( s E , s i ) ↦ ℰ s E ⊗ 𝒱 s i ( i ) ) ≃ ( S E × S 1 ⟶ Vect ( s E , s 1 ) ↦ ℰ s E ⊗ 𝒱 s 1 ( 1 ) ) ⊔ ( S E × S 2 ⟶ Vect ( s E , s 2 ) ↦ ℰ s E ⊗ 𝒱 s 2 ( 2 ) ) ≡ ℰ ⊠ 𝒱 ( 1 ) ⊔ ℰ ⊠ 𝒱 ( 2 )
\begin{array}{l}
\mathcal{E}
\,\boxtimes\,
\big(
\mathcal{V}^{(1)}
\,\sqcup\,
\mathcal{V}^{(2)}
\big)
\\
\;\equiv\;
\big(
\mathcal{E}_{(-)} \,\colon\, S_E \to Vect
\big)
\,\boxtimes\,
\Big(
\big(
\mathcal{V}^{(1)}_{(-)} \,\colon\, S_1 \to Vect
\big)
\,\sqcup\,
\big(
\mathcal{V}^{(2)}_{(-)} \,\colon\, S_2 \to Vect
\big)
\Big)
\\
\;\simeq\;
\big(
\mathcal{E}_{(-)} \,\colon\, S_E \to Vect
\big)
\,\boxtimes\,
\left(
\array{
S_1 \sqcup S_2 &\longrightarrow& Vect
\\
s_i &\mapsto& \mathcal{V}^{(i)}_{s_i}
}
\right)
\\
\;\simeq\;
\left(
\array{
S_E \times (S_1 \sqcup S_2)
&\longrightarrow& Vect
\\
(s_E , s_i) &\mapsto&
\mathcal{E}_{s_E} \otimes \mathcal{V}^{(i)}_{s_i}
}
\right)
\\
\;\simeq\;
\left(
\array{
(S_E \times S_1) \,\sqcup\, (S_2 \times S_2)
&\longrightarrow& Vect
\\
(s_E , s_i) &\mapsto&
\mathcal{E}_{s_E} \otimes \mathcal{V}^{(i)}_{s_i}
}
\right)
\\
\;\simeq\;
\left(
\array{
S_E \times S_1
&\longrightarrow& Vect
\\
(s_E , s_1)
&\mapsto&
\mathcal{E}_{s_E} \otimes \mathcal{V}^{(1)}_{s_1}
}
\right)
\,\sqcup\,
\left(
\array{
S_E \times S_2
&\longrightarrow& Vect
\\
(s_E , s_2)
&\mapsto&
\mathcal{E}_{s_E} \otimes \mathcal{V}^{(2)}_{s_2}
}
\right)
\\
\;\equiv\;
\mathcal{E} \boxtimes \mathcal{V}^{(1)}
\,\sqcup\,
\mathcal{E} \boxtimes \mathcal{V}^{(2)}
\end{array}
Amalgamation of monoidal and parameter structures
under construction
We want to point out a way in which VectBund VectBund with its external tensor product -structure is the canonical “amalgamation” of
vector spaces equipped with their tensor product,
vector spaces equipped with parametrization, namely vector bundles,
at least in the case that the base space is discrete.
The argument generalizes immediately to flat vector bundles over arbitrary base spaces (by enhancing the following parameter sets to fundamental groupoids ), and in fact to
(
∞
,
1
)
(\infty,1)
-vector bundles with flat
∞
\infty
-connections (by enhancing the fundamental groupoids further to fundamental
∞
\infty
-groupoids and the category of vector spaces to the (infinity,1)-category of chain complexes ).
In order to formalize this idea, we need to work inside a 2-category which suitably subsumes all of the following very large (2,1)-categories :
Here we understand that
The system of forgetful 2-functors between these (2,1)-categories forms a square diagram which we may regard as the image of a corresponding contravariant pseudofunctor from the commuting square -diagram category to 2Cat :
C : ( 1 , 0 ) ⟶ ( 1 , 1 ) ↑ ↑ ( 0 , 0 ) ⟶ ( 1 , 0 ) ↦ MonCat ⟵ DistMonCat ↓ ↓ Cat ⟵ CoCartCat
\mathbf{C}
\;\;
\colon
\;\;
\array{
(1,0) &\longrightarrow& (1,1)
\\
\big\uparrow && \big\uparrow
\\
(0,0) &\longrightarrow& (1,0)
}
\;\;\;\;
\mapsto
\;\;\;\;
\array{
MonCat &\longleftarrow& DistMonCat
\\
\big\downarrow && \big\downarrow
\\
Cat &\longleftarrow& CoCartCat
}
The 2-categorical context which we are after is then the (2,1)- Grothendieck construction ∫ C \int \mathbf{C} on this pseudofunctor : Here 1-morphisms are functors which strictly preserve the tensor products present on their domain category, but whose codomain may be equipped with further tensor products (though not with fewer tensor products).
Claim. In ∫ C \int \mathbf{C} the following diagram is a (homotopy ) pushout
Proof
We check the universal property . To this end, observe that any cocone under the diagram must have as tip a distributive monoidal category , since only these can receive morphisms in ∫ C \int \mathbf{C} both from a monoidal and from a cocartesian category.
This means that a general cocone looks like the following solid diagram:
We need to see that this uniquely admits the dashed arrow. Unwinding the definitions, the existence of the dashed arrow means that any functor F : Vect Set → 𝒞 F \,\colon\, Vect_{Set} \to \mathcal{C} which preserves both the coproduct of vector bundles as well as the tensor product on fibers already respects the external tensor product . But this follows by the distributivity and using that any set is the coproduct of its elements:
F ( ℰ ⊠ ℰ ′ ) ≃ F ( ∐ s ∈ S ( { s } ⟶ Vect s ↦ ℰ s ) ⊠ ∐ s ′ ∈ S ′ ( { s ′ } ⟶ Vect s ′ ↦ ℰ ′ s ′ ) ) ≃ F ( ∐ ( s , s ′ ) ∈ S × S ′ ( ( ( s : { s } ) ↦ ℰ s ) ⊠ ( ( s ′ : { s ′ } ) ↦ ℰ s ′ ) ) ) ≃ ∐ ( s , s ′ ) ∈ S × S ′ ( ( F ( ( s : { s } ) ↦ ℰ s ) ) ⊗ ( F ( ( s ′ : { s ′ } ) ↦ ℰ s ′ ) ) ) ≃ ( F ( ∐ s ∈ S ( s : { s } ) ↦ ℰ s ) ) ⊗ ( F ( ∐ s ′ ∈ S ′ ( s ′ : { s ′ } ) ↦ ℰ s ′ ) ) ≃ F ( ℰ ) ⊗ F ( ℰ ′ ) .
\begin{array}{l}
F\big( \mathcal{E} \boxtimes \mathcal{E}' \big)
\\
\;\simeq\;
F
\Bigg(
\underset{s \in S}{\coprod}
\left(
\array{
\{s\} &\longrightarrow& Vect
\\
s &\mapsto& \mathcal{E}_s
}
\right)
\;\;
\boxtimes
\;\;
\underset{s' \in S'}{\coprod}
\left(
\array{
\{s'\} &\longrightarrow& Vect
\\
s' &\mapsto& \mathcal{E}'_{s'}
}
\right)
\Bigg)
\\
\;\simeq\;
F
\Bigg(
\underset{(s, s') \in S \times S'}{\coprod}
\Big(
\big(
(s \colon \{s\}) \mapsto \mathcal{E}_s
\big)
\boxtimes
\big(
(s' \colon \{s'\}) \mapsto \mathcal{E}_{s'}
\big)
\Big)
\Bigg)
\\
\;\simeq\;
\underset{(s, s') \in S \times S'}{\coprod}
\bigg(
\Big(
F
\big(
(s \colon \{s\}) \mapsto \mathcal{E}_s
\big)
\Big)
\otimes
\Big(
F
\big(
(s' \colon \{s'\}) \mapsto \mathcal{E}_{s'}
\big)
\Big)
\bigg)
\\
\;\simeq\;
\Big(
F
\big(
\underset{s \in S}{\coprod}
(s \colon \{s\}) \mapsto \mathcal{E}_s
\big)
\Big)
\otimes
\Big(
F
\big(
\underset{s' \in S'}{\coprod}
(s' \colon \{s'\}) \mapsto \mathcal{E}_{s'}
\big)
\Big)
\\
\;\simeq\;
F(\mathcal{E}) \otimes F(\mathcal{E}')
\,.
\end{array}