Definitions
Transfors between 2-categories
Morphisms in 2-categories
Structures in 2-categories
Limits in 2-categories
Structures on 2-categories
A monad is adjoint to a comonad , if its underlying endofunctor is left adjoint to the underlying 1-morphism of the comonad, and and are conjugate/adjoint/mate 2-cells to and in the sense explained below.
In fact given a monad which has a right adjoint , automatically is a part of a comonad where and are in some sense dual to and .
Thus there is a bijective correspondence between monads having a right adjoint and comonads having a left adjoint (what Alexander Rosenberg calls duality). This is a little more than a consequence of two general facts:
If then for every natural number .
Given two adjunctions and where , then there is a bijection between the natural transformations and natural transformations such that
where the horizontal arrows are the natural bijections given by the adjunctions. Eilenberg & Moore 1965 would write and talk about “adjointness for morphisms” (of functors), which is of course relative to the given adjunctions among functors. MacLane calls the correspondence conjugation (p 99-102 in Categories for Working Mathematician). It is a special case, of a general construction of mates.
If and are their unit and counit of course the upper arrow is and the lower arrow . Thus the condition renders as
or . Given , the uniqueness of is clear from the above diagram, as the horizontal arrows are invertible. determines , namely . For the existence of (given ) satisfying the above equation, one proposes that is the composition , i.e.
and checks that it works. The inverse is similarly given by the composition
This correspondence now enables in our special case to dualize to , and similarly unit to the counit.
(adjoint monads induced from adjoint triples of adjoint functors)
Every adjoint triple (of adjoint functors) induces an adjoint pair . The endofunctor is underlying a monad induced by the adjunction and is underlying a comonad induced by the adjuntion . This pair of a monad and a comonad are adjoint.
(See also at adjoint modality.)
Given an adjoint pair of a monad and comonad
on some category , then there is an equivalence between their Eilenberg-Moore categories of algebras over and coalgebras over , compatible with their forgetful functors to :
Given a small category , the endofunctor category (of endofunctors and natural transformations between them, with vertical composition as composition) is monoidal with respect to the composition as the tensor product of objects (endofunctor) and Godement product (horizontal composition) as the tensor product of morphisms (natural transformations). Hence we can consider operads and algebras over operads, as well as, dually, coalgebras over cooperads; or some other framework for general algebras and coalgebras (or even props).
In any case, given an adjunction , operations dualize to cooperations , and more generally multioperations dualize to the multioperations . We would like to sketch the proof that the identities for operations on , correspond to the identities on cooperations on (and more generally there is a duality among the identities for multioperations). This is essentially the consequence of
Lemma. (Zoran) Given the adjunction with unit and counit , and the sequence
the composition of the dual (in the above sense) sequence
equal to the dual of ,
Proof. Mike Shulman notices that this is a special case of known contravariant functoriality of mates, but here is a direct proof.
We need to prove that the composition
equals the composition
Note that in the two compositions there is an opposite order between the expressions involving and those involving . But anyway, their equality reduces to a naturality calculation (which in particular exchanges the order of and in effect):
where . The commutativity of all small squares in the diagram is evident, except the lower left corner. This one follows by one of the triangle identities for the adjunction . Namely,
An adjoint modality is an example of a pair of adjoint monads.
Discussion of adjoint monads originates with
(there called “adjoint triples”, sticking with the old term “triple” for “monad”, a terminology that now clashes with the modern use of adjoint triples of adjoint functors).
Textbook account:
Discussion in the context of ambidextrous adjunctions and Frobenius monads:
Ross Street, Frobenius monads and pseudomonoids, J. Math. Phys. 45 3930 (2004) [doi:10.1063/1.1788852]
Aaron Lauda, Frobenius algebras and ambidextrous adjunctions, Theory and Applications of Categories 16 4 (2006) 84-122 [arXiv:math/0502550, tac:16-04]
Last revised on August 10, 2023 at 17:53:40. See the history of this page for a list of all contributions to it.