nLab geometry of physics - basic notions of categorical algebra

Basic notions of Categorical algebra

Basic notions of Categorical algebra

We have seen that the existence of Cartesian products in a category π’ž\mathcal{C} equips is with a functor of the form

π’žΓ—π’žβŸΆ(βˆ’)Γ—(βˆ’)π’ž \mathcal{C} \times \mathcal{C} \overset{ (-) \times (-) }{\longrightarrow} \mathcal{C}

which is directly analogous to the operation of multiplication in an associative algebra or even just in a semigroup (or monoid), just β€œcategorified” (Example below). This is made precise by the concept of a monoidal category (Def. below).

This relation between category theory and algebra leads to the fields of categorical algebra and of universal algebra.

Here we are mainly interested in monoidal categories as a foundations for enriched category theory, to which we turn below.

\,

Monoidal categories

Definition

(monoidal category)

An_monoidal category_ is a category π’ž\mathcal{C} (Def. ) equipped with

  1. a functor (Def. )

    βŠ—:π’žΓ—π’žβŸΆπ’ž \otimes \;\colon\; \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}

    out of the product category of π’ž\mathcal{C} with itself (Example ), called the tensor product,

  2. an object

    1∈Obj π’ž 1 \in Obj_{\mathcal{C}}

    called the unit object or tensor unit,

  3. a natural isomorphism (Def. )

    a:((βˆ’)βŠ—(βˆ’))βŠ—(βˆ’)βŸΆβ‰ƒ(βˆ’)βŠ—((βˆ’)βŠ—(βˆ’)) a \;\colon\; ((-)\otimes (-)) \otimes (-) \overset{\simeq}{\longrightarrow} (-) \otimes ((-)\otimes(-))

    called the associator,

  4. a natural isomorphism

    β„“:(1βŠ—(βˆ’))βŸΆβ‰ƒ(βˆ’) \ell \;\colon\; (1 \otimes (-)) \overset{\simeq}{\longrightarrow} (-)

    called the left unitor, and a natural isomorphism

    r:(βˆ’)βŠ—1βŸΆβ‰ƒ(βˆ’) r \;\colon\; (-) \otimes 1 \overset{\simeq}{\longrightarrow} (-)

    called the right unitor,

such that the following two kinds of diagrams commute, for all objects involved:

  1. triangle identity:

    (xβŠ—1)βŠ—y ⟢a x,1,y xβŠ—(1βŠ—y) ρ xβŠ—1 yβ†˜ ↙ 1 xβŠ—Ξ» y xβŠ—y \array{ & (x \otimes 1) \otimes y &\stackrel{a_{x,1,y}}{\longrightarrow} & x \otimes (1 \otimes y) \\ & {}_{\rho_x \otimes 1_y}\searrow && \swarrow_{1_x \otimes \lambda_y} & \\ && x \otimes y && }
  2. the pentagon identity:

    (wβŠ—x)βŠ—(yβŠ—z) Ξ± wβŠ—x,y,zβ†— β†˜ Ξ± w,x,yβŠ—z ((wβŠ—x)βŠ—y)βŠ—z (wβŠ—(xβŠ—(yβŠ—z))) Ξ± w,x,yβŠ—id z↓ ↑ id wβŠ—Ξ± x,y,z (wβŠ—(xβŠ—y))βŠ—z ⟢α w,xβŠ—y,z wβŠ—((xβŠ—y)βŠ—z) \array{ && (w \otimes x) \otimes (y \otimes z) \\ & {}^{\mathllap{\alpha_{w \otimes x, y, z}}}\nearrow && \searrow^{\mathrlap{\alpha_{w,x,y \otimes z}}} \\ ((w \otimes x ) \otimes y) \otimes z && && (w \otimes (x \otimes (y \otimes z))) \\ {}^{\mathllap{\alpha_{w,x,y}} \otimes id_z }\downarrow && && \uparrow^{\mathrlap{ id_w \otimes \alpha_{x,y,z} }} \\ (w \otimes (x \otimes y)) \otimes z && \underset{\alpha_{w,x \otimes y, z}}{\longrightarrow} && w \otimes ( (x \otimes y) \otimes z ) }
Example

(cartesian monoidal category)

Let π’ž\mathcal{C} be a category in which all finite products exist. Then π’ž\mathcal{C} becomes a monoidal category (Def. ) by

  1. taking the tensor product to be the Cartesian product

    XβŠ—Y≔XΓ—Y X \otimes Y \;\coloneqq\; X \times Y
  2. taking the unit object to be the terminal object (Def. )

    I≔* I \;\coloneqq\; \ast

Monoidal categories of this form are called cartesian monoidal categories.

Lemma

(Kelly 64)

Let (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) be a monoidal category, def. . Then the left and right unitors β„“\ell and rr satisfy the following conditions:

  1. β„“ 1=r 1:1βŠ—1βŸΆβ‰ƒ1\ell_1 = r_1 \;\colon\; 1 \otimes 1 \overset{\simeq}{\longrightarrow} 1;

  2. for all objects x,yβˆˆπ’žx,y \in \mathcal{C} the following diagrams commutes:

    (1βŠ—x)βŠ—y Ξ± 1,x,y↓ β†˜ β„“ xβŠ—id y 1βŠ—(xβŠ—y) βŸΆβ„“ xβŠ—y xβŠ—y; \array{ (1 \otimes x) \otimes y & & \\ {}^\mathllap{\alpha_{1, x, y}} \downarrow & \searrow^\mathrlap{\ell_x \otimes id_y} & \\ 1 \otimes (x \otimes y) & \underset{\ell_{x \otimes y}}{\longrightarrow} & x \otimes y } \,;

    and

    xβŠ—(yβŠ—1) Ξ± 1,x,y βˆ’1↓ β†˜ id xβŠ—r y (xβŠ—y)βŠ—1 ⟢r xβŠ—y xβŠ—y; \array{ x \otimes (y \otimes 1) & & \\ {}^\mathllap{\alpha^{-1}_{1, x, y}} \downarrow & \searrow^\mathrlap{id_x \otimes r_y} & \\ (x \otimes y) \otimes 1 & \underset{r_{x \otimes y}}{\longrightarrow} & x \otimes y } \,;

For proof see at monoidal category this lemma and this lemma.

Remark

Just as for an associative algebra it is sufficient to demand 1a=a1 a = a and a1=aa 1 = a and (ab)c=a(bc)(a b) c = a (b c) in order to have that expressions of arbitrary length may be re-bracketed at will, so there is a coherence theorem for monoidal categories which states that all ways of freely composing the unitors and associators in a monoidal category (def. ) to go from one expression to another will coincide. Accordingly, much as one may drop the notation for the bracketing in an associative algebra altogether, so one may, with due care, reason about monoidal categories without always making all unitors and associators explicit.

(Here the qualifier β€œfreely” means informally that we must not use any non-formal identification between objects, and formally it means that the diagram in question must be in the image of a strong monoidal functor from a free monoidal category. For example if in a particular monoidal category it so happens that the object XβŠ—(YβŠ—Z)X \otimes (Y \otimes Z) is actually equal to (XβŠ—Y)βŠ—Z(X \otimes Y)\otimes Z, then the various ways of going from one expression to another using only associators and this equality no longer need to coincide.)

Definition

(braided monoidal category)

A braided monoidal category, is a monoidal category π’ž\mathcal{C} (def. ) equipped with a natural isomorphism (Def. )

(1)Ο„ x,y:xβŠ—yβ†’yβŠ—x \tau_{x,y} \colon x \otimes y \to y \otimes x

called the braiding, such that the following two kinds of diagrams commute for all objects involved (β€œhexagon identities”):

(xβŠ—y)βŠ—z β†’a x,y,z xβŠ—(yβŠ—z) β†’Ο„ x,yβŠ—z (yβŠ—z)βŠ—x ↓ Ο„ x,yβŠ—Id ↓ a y,z,x (yβŠ—x)βŠ—z β†’a y,x,z yβŠ—(xβŠ—z) β†’IdβŠ—Ο„ x,z yβŠ—(zβŠ—x) \array{ (x \otimes y) \otimes z &\stackrel{a_{x,y,z}}{\to}& x \otimes (y \otimes z) &\stackrel{\tau_{x,y \otimes z}}{\to}& (y \otimes z) \otimes x \\ \downarrow^{\tau_{x,y}\otimes Id} &&&& \downarrow^{a_{y,z,x}} \\ (y \otimes x) \otimes z &\stackrel{a_{y,x,z}}{\to}& y \otimes (x \otimes z) &\stackrel{Id \otimes \tau_{x,z}}{\to}& y \otimes (z \otimes x) }

and

xβŠ—(yβŠ—z) β†’a x,y,z βˆ’1 (xβŠ—y)βŠ—z β†’Ο„ xβŠ—y,z zβŠ—(xβŠ—y) ↓ IdβŠ—Ο„ y,z ↓ a z,x,y βˆ’1 xβŠ—(zβŠ—y) β†’a x,z,y βˆ’1 (xβŠ—z)βŠ—y β†’Ο„ x,zβŠ—Id (zβŠ—x)βŠ—y, \array{ x \otimes (y \otimes z) &\stackrel{a^{-1}_{x,y,z}}{\to}& (x \otimes y) \otimes z &\stackrel{\tau_{x \otimes y, z}}{\to}& z \otimes (x \otimes y) \\ \downarrow^{Id \otimes \tau_{y,z}} &&&& \downarrow^{a^{-1}_{z,x,y}} \\ x \otimes (z \otimes y) &\stackrel{a^{-1}_{x,z,y}}{\to}& (x \otimes z) \otimes y &\stackrel{\tau_{x,z} \otimes Id}{\to}& (z \otimes x) \otimes y } \,,

where a x,y,z:(xβŠ—y)βŠ—zβ†’xβŠ—(yβŠ—z)a_{x,y,z} \colon (x \otimes y) \otimes z \to x \otimes (y \otimes z) denotes the components of the associator of π’ž βŠ—\mathcal{C}^\otimes.

Definition

A symmetric monoidal category is a braided monoidal category (def. ) for which the braiding

Ο„ x,y:xβŠ—yβ†’yβŠ—x \tau_{x,y} \colon x \otimes y \to y \otimes x

satisfies the condition:

Ο„ y,xβˆ˜Ο„ x,y=1 xβŠ—y \tau_{y,x} \circ \tau_{x,y} = 1_{x \otimes y}

for all objects x,yx, y

Remark

In analogy to the coherence theorem for monoidal categories (remark ) there is a coherence theorem for symmetric monoidal categories (def. ), saying that every diagram built freely (see remark ) from associators, unitors and braidings such that both sides of the diagram correspond to the same permutation of objects, coincide.

Definition

(symmetric closed monoidal category)

Given a symmetric monoidal category π’ž\mathcal{C} with tensor product βŠ—\otimes (def. ) it is called a closed monoidal category if for each Yβˆˆπ’žY \in \mathcal{C} the functor YβŠ—(βˆ’)≃(βˆ’)βŠ—YY \otimes(-)\simeq (-)\otimes Y has a right adjoint, denoted hom(Y,βˆ’)hom(Y,-)

(2)π’žβŠ₯⟢[Y,βˆ’]⟡(βˆ’)βŠ—Yπ’ž, \mathcal{C} \underoverset {\underset{ [Y,-]}{\longrightarrow}} {\overset{(-) \otimes Y}{\longleftarrow}} {\bot} \mathcal{C} \,,

hence if there are natural bijections

Hom π’ž(XβŠ—Y,Z)≃Hom π’žC(X,[Y,Z]) Hom_{\mathcal{C}}(X \otimes Y, Z) \;\simeq\; Hom_{\mathcal{C}}{C}(X, [Y,Z])

for all objects X,Zβˆˆπ’žX,Z \in \mathcal{C}.

Since for the case that X=1X = 1 is the tensor unit of π’ž\mathcal{C} this means that

Hom π’ž(1,[Y,Z])≃Hom π’ž(Y,Z), Hom_{\mathcal{C}}(1, [Y,Z]) \simeq Hom_{\mathcal{C}}(Y,Z) \,,

the object [Y,Z]βˆˆπ’ž[Y,Z] \in \mathcal{C} is an enhancement of the ordinary hom-set Hom π’ž(Y,Z)Hom_{\mathcal{C}}(Y,Z) to an object in π’ž\mathcal{C}. Accordingly, it is also called the internal hom between YY and ZZ.

The adjunction counit (Def. ) in this case is called the evaluation morphism

(3)XβŠ—[X,Y]⟢evY X \otimes [X,Y] \overset{ev}{\longrightarrow} Y
Example

(Set is a cartesian closed category)

The category Set of all sets (Example ) equipped with its cartesian monoidal category-structure (Example ) is a closed monoidal category (Def. ), hence a cartesian closed category. The Cartesian product is the original Cartesian product of sets, and the internal hom is the function set [X,Y][X,Y] of functions from XX to YY

Example

(tensor product of abelian groups is closed monoidal category symmetric monoidal category-structure)

The category Ab of abelian groups (as in Example ) becomes a symmetric monoidal category (Def. ) with tensor product the actual tensor product of abelian groups βŠ— β„€\otimes_{\mathbb{Z}} and with tensor unit the additive group β„€\mathbb{Z} of integers. Again the associator, unitor and braiding isomorphism are the evident ones coming from the underlying sets.

This is a closed monoidal category with internal hom hom(A,B)hom(A,B) being the set of homomorphisms Hom Ab(A,B)Hom_{Ab}(A,B) equipped with the pointwise group structure for Ο• 1,Ο• 2∈Hom Ab(A,B)\phi_1, \phi_2 \in Hom_{Ab}(A,B) then (Ο• 1+Ο• 2)(a)≔ϕ 1(a)+Ο• 2(b)∈B(\phi_1 + \phi_2)(a) \coloneqq \phi_1(a) + \phi_2(b) \; \in B.

This is the archetypical case that motivates the notation β€œβŠ—\otimes” for the pairing operation in a monoidal category.

Example

(Cat and Grpd are cartesian closed categories)

The category Cat (Example ) of all small categories (Example ) is a cartesian monoidal category-structure (Example ) with Cartesian product given by forming product categories (Example ).

Inside this, the full subcategory (Example ) Grpd (Example ) of all small groupoids (Example ) is itself a cartesian monoidal category-structure (Example ) with Cartesian product given by forming product categories (Example ).

In both cases this yields a closed monoidal category (Def. ), hence a cartesian closed category: the internal hom is given by the functor category construction (Example ).

Example

(categories of presheaves are cartesian closed)

Let π’ž\mathcal{C} be a category and write [π’ž op,Set][\mathcal{C}^{op}, Set] for its category of presheaves (Example ).

This is

  1. a cartesian monoidal category (Example ), whose Cartesian product is given objectwise in π’ž\mathcal{C} by the Cartesian product in Set:

    for X,Y∈[π’ž op,Set]\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set], their Cartesian product XΓ—Y\mathbf{X} \times \mathbf{Y} exists and is given by

    XΓ—Y:Ac 1 ↦ X(c 1)Γ—Y(c 1) f↓ ↑ X(f)Γ—Y(f) c 2 ↦ X(c 2)Γ—Y(c 2) \mathbf{X} \times \mathbf{Y} \;\;\colon\;\;\phantom{A} \array{ c_1 &\mapsto& \mathbf{X}(c_1) \times \mathbf{Y}(c_1) \\ {}^{\mathllap{f}}\big\downarrow && \big\uparrow^{ \mathrlap{ \mathbf{X}(f) \times \mathbf{Y}(f) } } \\ c_2 &\mapsto& \mathbf{X}(c_2) \times \mathbf{Y}(c_2) }
  2. a cartesian closed category (Def. ), whose internal hom is given for X,Y∈[π’ž op,Set]\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set] by

    [X,Y]:Ac 1 ↦ Hom [π’ž op,Set](y(c 1)Γ—X,y) f↓ ↑ Hom [π’ž op,Set](y(f)Γ—X,y) c 2 ↦ Hom [π’ž op,Set](y(c 2)Γ—X,y) [\mathbf{X}, \mathbf{Y}] \;\;\colon\;\;\phantom{A} \array{ c_1 &\mapsto& Hom_{[\mathcal{C}^{op}, Set]}( y(c_1) \times \mathbf{X}, \mathbf{y} ) \\ {}^{ \mathllap{ f } }\big\downarrow && \big\uparrow^{ \mathrlap{ Hom_{[\mathcal{C}^{op}, Set]}( y(f) \times \mathbf{X}, \mathbf{y} ) } } \\ c_2 &\mapsto& Hom_{[\mathcal{C}^{op}, Set]}( y(c_2) \times \mathbf{X}, \mathbf{y} ) }

    Here y:π’žβ†’[π’ž op,Set]y \;\colon\; \mathcal{C} \to [\mathcal{C}^{op}, Set] denotes the Yoneda embedding and Hom [π’ž op,Set](βˆ’,βˆ’)Hom_{[\mathcal{C}^{op}, Set]}(-,-) is the hom-functor on the category of presheaves.

Proof

The first statement is a special case of the general fact that limits of presheaves are computed objectwise (Example ).

For the second statement, first assume that [X,Y][\mathbf{X}, \mathbf{Y}] does exist. Then by the adjunction hom-isomorphism (?) we have for any other presheaf Z\mathbf{Z} a natural isomorphism of the form

(4)Hom [π’ž op,Set](Z,[X,Y])≃Hom [π’ž op,Set](ZΓ—X,Y). Hom_{[\mathcal{C}^{op}, Set]}(\mathbf{Z}, [\mathbf{X},\mathbf{Y}]) \;\simeq\; Hom_{[\mathcal{C}^{op}, Set]}(\mathbf{Z} \times \mathbf{X}, \mathbf{Y}) \,.

This holds in particular for Z=y(c)\mathbf{Z} = y(c) a representable presheaf (Example ) and so the Yoneda lemma (Prop. ) implies that if it exists, then [X,Y][\mathbf{X}, \mathbf{Y}] must have the claimed form:

[X,Y](c) ≃Hom [π’ž op,Set](y(c),[X,Y]) ≃Hom [π’ž op,Set](y(c)Γ—X,Y). \begin{aligned} [\mathbf{X}, \mathbf{Y}](c) & \simeq Hom_{[\mathcal{C}^{op}, Set]}( y(c), [\mathbf{X}, \mathbf{Y}] ) \\ & \simeq Hom_{ [\mathcal{C}^{op}, Set] }( y(c) \times \mathbf{X}, \mathbf{Y} ) \,. \end{aligned}

Hence it remains to show that this formula does make (4) hold generally.

For this we use the equivalent characterization of adjoint functors from Prop. , in terms of the adjunction counit providing a system of universal arrows (Def. ).

Define a would-be adjunction counit, hence a would-be evaluation morphism (3), by

XΓ—[X,Y] ⟢ev Y X(c)Γ—Hom [π’ž op,Set](y(c)Γ—X,Y) ⟢ev c Y(c) (x,Ο•) ↦ Ο• c(id c,x) \array{ \mathbf{X} \times [\mathbf{X} , \mathbf{Y}] &\overset{ev}{\longrightarrow}& \mathbf{Y} \\ \mathbf{X}(c) \times Hom_{[\mathcal{C}^{op}, Set]}(y(c) \times \mathbf{X}, \mathbf{Y}) &\overset{ev_c}{\longrightarrow}& \mathbf{Y}(c) \\ (x, \phi) &\mapsto& \phi_c( id_c, x ) }

Then it remains to show that for every morphism of presheaves of the form XΓ—A⟢AfAY \mathbf{X} \times \mathbf{A} \overset{\phantom{A}f\phantom{A}}{\longrightarrow} \mathbf{Y} there is a unique morphism f˜:A⟢[X,Y]\widetilde f \;\colon\; \mathbf{A} \longrightarrow [\mathbf{X}, \mathbf{Y}] such that

(5)XΓ—A ⟢XΓ—f˜ XΓ—[X,Y] fβ†˜ ↙ ev Y \array{ \mathbf{X} \times \mathbf{A} && \overset{ \mathbf{X} \times \widetilde f }{\longrightarrow} && \mathbf{X} \times [\mathbf{X}, \mathbf{Y}] \\ & {}_{\mathllap{ \mathrlap{f} }}\searrow && \swarrow_{ \mathrlap{ ev } } \\ && \mathbf{Y} }

The commutativity of this diagram means in components at cβˆˆπ’žc \in \mathcal{C} that, that for all x∈X(c)x \in \mathbf{X}(c) and a∈A(c)a \in \mathbf{A}(c) we have

ev c(x,f˜ c(a)) ≔(f˜ c(a)) c(id c,x) =f c(x,a) \begin{aligned} ev_c( x, \widetilde f_c(a) ) & \coloneqq (\widetilde f_c(a))_c( id_c, x ) \\ & = f_c( x, a ) \end{aligned}

Hence this fixes the component f˜ c(a) c\widetilde f_c(a)_c when its first argument is the identity morphism id cid_c. But let g:dβ†’cg \;\colon\; d \to c be any morphism and chase (id c,x)(id_c, x ) through the naturality diagram for f˜ c(a)\widetilde f_c(a):

Hom π’ž(c,c)Γ—X(c) ⟢(f˜ c(a)) c Y(c) g *↓ ↓ g * Hom π’ž(d,c)Γ—X(d) ⟢(f˜ c(a)) d Y(d)AAAA{(id c,x)} ⟢ {f c(x,a)} ↓ ↓ {(g,g *(x))} ⟢ {f d(g *(x),g *(a))} \array{ Hom_{\mathcal{C}}(c,c) \times \mathbf{X}(c) &\overset{ (\widetilde f_c(a))_c }{\longrightarrow}& \mathbf{Y}(c) \\ {}^{\mathllap{ g^\ast }}\big\downarrow && \big\downarrow^{\mathrlap{ g^\ast }} \\ Hom_{\mathcal{C}}(d,c) \times \mathbf{X}(d) &\overset{ (\widetilde f_c(a))_d }{\longrightarrow}& \mathbf{Y}(d) } \phantom{AAAA} \array{ \{ (id_c, x ) \} &\longrightarrow& \{ f_c( x, a ) \} \\ \big\downarrow && \big\downarrow \\ \{ (g, g^\ast(x)) \} &\longrightarrow& \{ f_d( g^\ast(x), g^\ast(a) ) \} }

This shows that (f˜ c(a)) d(\widetilde f_c(a))_d is fixed to be given by

(6)(f˜ c(a)) d(g,xβ€²)=f d(xβ€²,g *(a)) (\widetilde f_c(a))_d( g, x' ) \;=\; f_d( x', g^\ast(a) )

at least on those pairs (g,xβ€²)(g,x') such that xβ€²x' is in the image of g *g^\ast.

But, finally, (f˜ c(a)) d(\widetilde f_c(a))_d is also natural in cc

A(c) ⟢f˜ c [X,Y](c) g *↓ ↓ g * A(d) ⟢f˜ d [X,Y](d) \array{ \mathbf{A}(c) &\overset{ \widetilde f_c }{\longrightarrow}& [\mathbf{X},\mathbf{Y}](c) \\ {}^{\mathllap{g^\ast}}\big\downarrow && \big\downarrow^{\mathrlap{g^\ast}} \\ \mathbf{A}(d) &\overset{ \widetilde f_d }{\longrightarrow}& [\mathbf{X},\mathbf{Y}](d) }

which implies that (6) must hold generally. Hence naturality implies that (5) indeed has a unique solution.

\,

The internal hom (Def. ) turns out to share all the abstract properties of the ordinary (external) hom-functor (Def. ), even though this is not completely manifest from its definition. We make this explicit by the following three propositions.

Proposition

(internal hom bifunctor)

For π’ž\mathcal{C} a closed monoidal category (Def. ), there is a unique functor (Def. ) out of the product category (Def. ) of π’ž\mathcal{C} with its opposite category (Def. )

[βˆ’,βˆ’]:π’ž opΓ—π’žβŸΆπ’ž [-,-] \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{C}

such that for each Xβˆˆπ’žX \in \mathcal{C} it coincides with the internal hom [X,βˆ’][X,-] (2) as a functor in the second variable, and such that there is a natural isomorphism

Hom(X,[Y,Z])≃Hom(XβŠ—Y,Z) Hom(X, [Y,Z]) \;\simeq\; Hom(X \otimes Y, Z)

which is natural not only in XX and ZZ, but also in YY.

Proof

We have a natural isomorphism for each fixed YY, and hence in particular for fixed YY and fixed ZZ by (2). With this the statement follows by Prop. .

In fact the 3-variable adjunction from Prop. even holds internally:

Proposition

(internal tensor/hom-adjunction)

In a symmetric closed monoidal category (def. ) there are natural isomorphisms

[XβŠ—Y,Z]≃[X,[Y,Z]] [X \otimes Y, Z] \;\simeq\; [X, [Y,Z]]

whose image under Hom π’ž(1,βˆ’)Hom_{\mathcal{C}}(1,-) (see also Example below) are the defining natural bijections of Prop. .

Proof

Let Aβˆˆπ’žA \in \mathcal{C} be any object. By applying the natural bijections from Prop. , there are composite natural bijections

Hom π’ž(A,[XβŠ—Y,Z]) ≃Hom π’ž(AβŠ—(XβŠ—Y),Z) ≃Hom π’ž((AβŠ—X)βŠ—Y,Z) ≃Hom π’ž(AβŠ—X,[Y,Z]) ≃Hom π’ž(A,[X,[Y,Z]]) \begin{aligned} Hom_{\mathcal{C}}(A , [X \otimes Y, Z]) & \simeq Hom_{\mathcal{C}}(A \otimes (X \otimes Y), Z) \\ & \simeq Hom_{\mathcal{C}}((A \otimes X)\otimes Y, Z) \\ & \simeq Hom_{\mathcal{C}}(A \otimes X, [Y,Z]) \\ & \simeq Hom_{\mathcal{C}}(A, [X, [Y,Z]]) \end{aligned}

Since this holds for all AA, the fully faithfulness of the Yoneda embedding (Prop. ) says that there is an isomorphism [XβŠ—Y,Z]≃[X,[Y,Z]][ X\otimes Y, Z ] \simeq [X, [Y,Z]]. Moreover, by taking A=1A = 1 in the above and using the left unitor isomorphisms AβŠ—(XβŠ—Y)≃XβŠ—YA \otimes (X \otimes Y) \simeq X \otimes Y and AβŠ—X≃XA\otimes X \simeq X we get a commuting diagram

Hom π’ž(1,[XβŠ—Y,Z)) βŸΆβ‰ƒ Hom π’ž(1,[X,[Y,Z]]) ≃↓ ↓ ≃ Hom π’ž(XβŠ—Y,Z) βŸΆβ‰ƒ Hom π’ž(X,[Y,Z]). \array{ Hom_{\mathcal{C}}(1, [X\otimes Y, Z )) &\overset{\simeq}{\longrightarrow}& Hom_{\mathcal{C}}(1, [X, [Y,Z]]) \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ Hom_{\mathcal{C}}(X \otimes Y, Z) &\overset{\simeq}{\longrightarrow}& Hom_{\mathcal{C}}(X, [Y,Z]) } \,.

Also the key respect of the hom-functor for limits is inherited by internal hom-functors

Proposition

(internal hom preserves limits)

Let π’ž\mathcal{C} be a symmetric closed monoidal category with internal hom-bifunctor [βˆ’,βˆ’][-,-] (Prop. ). Then this bifunctor preserves limits in the second variable, and sends colimits in the first variable to limits:

[X,lim⟡j∈π’₯Y(j)]≃lim⟡j∈π’₯[X,Y(j)] [X, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Y(j)] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [X, Y(j)]

and

[lim⟢j∈π’₯Y(j),X]≃lim⟡j∈π’₯[Y(j),X] [\underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j),X] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j),X]
Proof

For Xβˆˆπ’³X \in \mathcal{X} any object, [X,βˆ’][X,-] is a right adjoint by definition, and hence preserves limits by Prop. .

For the other case, let Y:β„’β†’π’žY \;\colon\; \mathcal{L} \to \mathcal{C} be a diagram in π’ž\mathcal{C}, and let Cβˆˆπ’žC \in \mathcal{C} be any object. Then there are isomorphisms

Hom π’ž(C,lim⟢j∈π’₯Y(j),X) ≃Hom π’ž(CβŠ—lim⟢j∈π’₯Y(j),X) ≃Hom π’ž(lim⟢j∈π’₯(CβŠ—Y(j)),X) ≃lim⟡j∈π’₯Hom π’ž((CβŠ—Y(j)),X) ≃lim⟡j∈π’₯Hom π’ž(C,[Y(j),X]) ≃Hom π’ž(C,lim⟡j∈π’₯[Y(j),X]) \begin{aligned} Hom_{\mathcal{C}}(C, \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ) & \simeq Hom_{\mathcal{C}}( C \otimes \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ) \\ & \simeq Hom_{\mathcal{C}}( \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( C, [Y(j), X] ) \\ & \simeq Hom_{\mathcal{C}}( C, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] ) \end{aligned}

which are natural in Cβˆˆπ’žC \in \mathcal{C}, where we used that the ordinary hom-functor preserves limits (Prop. ), and that the left adjoint CβŠ—(βˆ’)C \otimes (-) preserves colimits, since left adjoints preserve colimits (Prop. ).

Hence by the fully faithfulness of the Yoneda embedding, there is an isomorphism

[lim⟢j∈π’₯Y(j),X]βŸΆβ‰ƒlim⟡j∈π’₯[Y(j),X]. \left[ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X \right] \overset{\simeq}{\longrightarrow} \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] \,.

\,

Now that we have seen monoidal categories with various extra properties, we next look at functors which preserve these:

Definition

(monoidal functors)

Let (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) be two monoidal categories (def. ). A lax monoidal functor between them is

  1. a functor (Def. )

    F:π’žβŸΆπ’Ÿ, F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D} \,,
  2. a morphism

    (7)Ο΅:1 π’ŸβŸΆF(1 π’ž) \epsilon \;\colon\; 1_{\mathcal{D}} \longrightarrow F(1_{\mathcal{C}})
  3. a natural transformation (Def. )

    (8)ΞΌ x,y:F(x)βŠ— π’ŸF(y)⟢F(xβŠ— π’žy) \mu_{x,y} \;\colon\; F(x) \otimes_{\mathcal{D}} F(y) \longrightarrow F(x \otimes_{\mathcal{C}} y)

    for all x,yβˆˆπ’žx,y \in \mathcal{C}

satisfying the following conditions:

  1. (associativity) For all objects x,y,zβˆˆπ’žx,y,z \in \mathcal{C} the following diagram commutes

    (F(x)βŠ— π’ŸF(y))βŠ— π’ŸF(z) βŸΆβ‰ƒa F(x),F(y),F(z) π’Ÿ F(x)βŠ— π’Ÿ(F(y)βŠ— π’ŸF(z)) ΞΌ x,yβŠ—id↓ ↓ idβŠ—ΞΌ y,z F(xβŠ— π’žy)βŠ— π’ŸF(z) F(x)βŠ— π’Ÿ(F(xβŠ— π’žy)) ΞΌ xβŠ— π’žy,z↓ ↓ ΞΌ x,yβŠ— π’žz F((xβŠ— π’žy)βŠ— π’žz) ⟢F(a x,y,z π’ž) F(xβŠ— π’ž(yβŠ— π’žz)), \array{ (F(x) \otimes_{\mathcal{D}} F(y)) \otimes_{\mathcal{D}} F(z) &\underoverset{\simeq}{a^{\mathcal{D}}_{F(x),F(y),F(z)}}{\longrightarrow}& F(x) \otimes_{\mathcal{D}}( F(y)\otimes_{\mathcal{D}} F(z) ) \\ {}^{\mathllap{\mu_{x,y} \otimes id}}\downarrow && \downarrow^{\mathrlap{id\otimes \mu_{y,z}}} \\ F(x \otimes_{\mathcal{C}} y) \otimes_{\mathcal{D}} F(z) && F(x) \otimes_{\mathcal{D}} ( F(x \otimes_{\mathcal{C}} y) ) \\ {}^{\mathllap{\mu_{x \otimes_{\mathcal{C}} y , z} } }\downarrow && \downarrow^{\mathrlap{\mu_{ x, y \otimes_{\mathcal{C}} z }}} \\ F( ( x \otimes_{\mathcal{C}} y ) \otimes_{\mathcal{C}} z ) &\underset{F(a^{\mathcal{C}}_{x,y,z})}{\longrightarrow}& F( x \otimes_{\mathcal{C}} ( y \otimes_{\mathcal{C}} z ) ) } \,,

    where a π’ža^{\mathcal{C}} and a π’Ÿa^{\mathcal{D}} denote the associators of the monoidal categories;

  2. (unitality) For all xβˆˆπ’žx \in \mathcal{C} the following diagrams commutes

    1 π’ŸβŠ— π’ŸF(x) βŸΆΟ΅βŠ—id F(1 π’ž)βŠ— π’ŸF(x) β„“ F(x) π’Ÿβ†“ ↓ ΞΌ 1 π’ž,x F(x) ⟡F(β„“ x π’ž) F(1βŠ— π’žx) \array{ 1_{\mathcal{D}} \otimes_{\mathcal{D}} F(x) &\overset{\epsilon \otimes id}{\longrightarrow}& F(1_{\mathcal{C}}) \otimes_{\mathcal{D}} F(x) \\ {}^{\mathllap{\ell^{\mathcal{D}}_{F(x)}}}\downarrow && \downarrow^{\mathrlap{\mu_{1_{\mathcal{C}}, x }}} \\ F(x) &\overset{F(\ell^{\mathcal{C}}_x )}{\longleftarrow}& F(1 \otimes_{\mathcal{C}} x ) }

    and

    F(x)βŠ— π’Ÿ1 π’Ÿ ⟢idβŠ—Ο΅ F(x)βŠ— π’ŸF(1 π’ž) r F(x) π’Ÿβ†“ ↓ ΞΌ x,1 π’ž F(x) ⟡F(r x π’ž) F(xβŠ— π’ž1), \array{ F(x) \otimes_{\mathcal{D}} 1_{\mathcal{D}} &\overset{id \otimes \epsilon }{\longrightarrow}& F(x) \otimes_{\mathcal{D}} F(1_{\mathcal{C}}) \\ {}^{\mathllap{r^{\mathcal{D}}_{F(x)}}}\downarrow && \downarrow^{\mathrlap{\mu_{x, 1_{\mathcal{C}} }}} \\ F(x) &\overset{F(r^{\mathcal{C}}_x )}{\longleftarrow}& F(x \otimes_{\mathcal{C}} 1 ) } \,,

    where β„“ π’ž\ell^{\mathcal{C}}, β„“ π’Ÿ\ell^{\mathcal{D}}, r π’žr^{\mathcal{C}}, r π’Ÿr^{\mathcal{D}} denote the left and right unitors of the two monoidal categories, respectively.

If Ο΅\epsilon and alll ΞΌ x,y\mu_{x,y} are isomorphisms, then FF is called a strong monoidal functor.

If moreover (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) are equipped with the structure of braided monoidal categories (def. ) with braidings Ο„ π’ž\tau^{\mathcal{C}} and Ο„ π’Ÿ\tau^{\mathcal{D}}, respectively, then the lax monoidal functor FF is called a braided monoidal functor if in addition the following diagram commutes for all objects x,yβˆˆπ’žx,y \in \mathcal{C}

F(x)βŠ— π’žF(y) βŸΆΟ„ F(x),F(y) π’Ÿ F(y)βŠ— π’ŸF(x) ΞΌ x,y↓ ↓ ΞΌ y,x F(xβŠ— π’žy) ⟢F(Ο„ x,y π’ž) F(yβŠ— π’žx). \array{ F(x) \otimes_{\mathcal{C}} F(y) &\overset{\tau^{\mathcal{D}}_{F(x), F(y)}}{\longrightarrow}& F(y) \otimes_{\mathcal{D}} F(x) \\ {}^{\mathllap{\mu_{x,y}}}\downarrow && \downarrow^{\mathrlap{\mu_{y,x}}} \\ F(x \otimes_{\mathcal{C}} y ) &\underset{F(\tau^{\mathcal{C}}_{x,y} )}{\longrightarrow}& F( y \otimes_{\mathcal{C}} x ) } \,.

A homomorphism f:(F 1,μ 1,ϡ 1)⟢(F 2,μ 2,ϡ 2)f\;\colon\; (F_1,\mu_1, \epsilon_1) \longrightarrow (F_2, \mu_2, \epsilon_2) between two (braided) lax monoidal functors is a monoidal natural transformation, in that it is a natural transformation f x:F 1(x)⟢F 2(x)f_x \;\colon\; F_1(x) \longrightarrow F_2(x) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all objects x,yβˆˆπ’žx,y \in \mathcal{C}:

F 1(x)βŠ— π’ŸF 1(y) ⟢f(x)βŠ— π’Ÿf(y) F 2(x)βŠ— π’ŸF 2(y) (ΞΌ 1) x,y↓ ↓ (ΞΌ 2) x,y F 1(xβŠ— π’žy) ⟢f(xβŠ— π’žy) F 2(xβŠ— π’žy) \array{ F_1(x) \otimes_{\mathcal{D}} F_1(y) &\overset{f(x)\otimes_{\mathcal{D}} f(y)}{\longrightarrow}& F_2(x) \otimes_{\mathcal{D}} F_2(y) \\ {}^{\mathllap{(\mu_1)_{x,y}}}\downarrow && \downarrow^{\mathrlap{(\mu_2)_{x,y}}} \\ F_1(x\otimes_{\mathcal{C}} y) &\underset{f(x \otimes_{\mathcal{C}} y ) }{\longrightarrow}& F_2(x \otimes_{\mathcal{C}} y) }

and

1 π’Ÿ Ο΅ 1↙ β†˜ Ο΅ 2 F 1(1 π’ž) ⟢f(1 π’ž) F 2(1 π’ž). \array{ && 1_{\mathcal{D}} \\ & {}^{\mathllap{\epsilon_1}}\swarrow && \searrow^{\mathrlap{\epsilon_2}} \\ F_1(1_{\mathcal{C}}) &&\underset{f(1_{\mathcal{C}})}{\longrightarrow}&& F_2(1_{\mathcal{C}}) } \,.

We write MonFun(π’ž,π’Ÿ)MonFun(\mathcal{C},\mathcal{D}) for the resulting category of lax monoidal functors between monoidal categories π’ž\mathcal{C} and π’Ÿ\mathcal{D}, similarly BraidMonFun(π’ž,π’Ÿ)BraidMonFun(\mathcal{C},\mathcal{D}) for the category of braided monoidal functors between braided monoidal categories, and SymMonFun(π’ž,π’Ÿ)SymMonFun(\mathcal{C},\mathcal{D}) for the category of braided monoidal functors between symmetric monoidal categories.

Remark

In the literature the term β€œmonoidal functor” often refers by default to what in def. is called a strong monoidal functor. But for the purpose of the discussion of functors with smash product below, it is crucial to admit the generality of lax monoidal functors.

If (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) are symmetric monoidal categories (def. ) then a braided monoidal functor (def. ) between them is often called a symmetric monoidal functor.

Proposition

For π’žβŸΆFπ’ŸβŸΆGβ„°\mathcal{C} \overset{F}{\longrightarrow} \mathcal{D} \overset{G}{\longrightarrow} \mathcal{E} two composable lax monoidal functors (def. ) between monoidal categories, then their composite F∘GF \circ G becomes a lax monoidal functor with structure morphisms

Ο΅ G∘F:1 β„°βŸΆΟ΅ GG(1 π’Ÿ)⟢G(Ο΅ F)G(F(1 π’ž)) \epsilon^{G\circ F} \;\colon\; 1_{\mathcal{E}} \overset{\epsilon^G}{\longrightarrow} G(1_{\mathcal{D}}) \overset{G(\epsilon^F)}{\longrightarrow} G(F(1_{\mathcal{C}}))

and

ΞΌ c 1,c 2 G∘F:G(F(c 1))βŠ— β„°G(F(c 2))⟢μ F(c 1),F(c 2) GG(F(c 1)βŠ— π’ŸF(c 2))⟢G(ΞΌ c 1,c 2 F)G(F(c 1βŠ— π’žc 2)). \mu^{G \circ F}_{c_1,c_2} \;\colon\; G(F(c_1)) \otimes_{\mathcal{E}} G(F(c_2)) \overset{\mu^{G}_{F(c_1), F(c_2)}}{\longrightarrow} G( F(c_1) \otimes_{\mathcal{D}} F(c_2) ) \overset{G(\mu^F_{c_1,c_2})}{\longrightarrow} G(F( c_1 \otimes_{\mathcal{C}} c_2 )) \,.

Algebras and modules

Definition

Given a monoidal category (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (Def. ), then a monoid internal to (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) is

  1. an object Aβˆˆπ’žA \in \mathcal{C};

  2. a morphism e:1⟢Ae \;\colon\; 1 \longrightarrow A (called the unit)

  3. a morphism ΞΌ:AβŠ—A⟢A\mu \;\colon\; A \otimes A \longrightarrow A (called the product);

such that

  1. (associativity) the following diagram commutes

    (AβŠ—A)βŠ—A βŸΆβ‰ƒa A,A,A AβŠ—(AβŠ—A) ⟢AβŠ—ΞΌ AβŠ—A ΞΌβŠ—A↓ ↓ ΞΌ AβŠ—A ⟢ ⟢μ A, \array{ (A\otimes A) \otimes A &\underoverset{\simeq}{a_{A,A,A}}{\longrightarrow}& A \otimes (A \otimes A) &\overset{A \otimes \mu}{\longrightarrow}& A \otimes A \\ {}^{\mathllap{\mu \otimes A}}\downarrow && && \downarrow^{\mathrlap{\mu}} \\ A \otimes A &\longrightarrow& &\overset{\mu}{\longrightarrow}& A } \,,

    where aa is the associator isomorphism of π’ž\mathcal{C};

  2. (unitality) the following diagram commutes:

    1βŠ—A ⟢eβŠ—id AβŠ—A ⟡idβŠ—e AβŠ—1 β„“β†˜ ↓ ΞΌ ↙ r A, \array{ 1 \otimes A &\overset{e \otimes id}{\longrightarrow}& A \otimes A &\overset{id \otimes e}{\longleftarrow}& A \otimes 1 \\ & {}_{\mathllap{\ell}}\searrow & \downarrow^{\mathrlap{\mu}} & & \swarrow_{\mathrlap{r}} \\ && A } \,,

    where β„“\ell and rr are the left and right unitor isomorphisms of π’ž\mathcal{C}.

Moreover, if (π’ž,βŠ—,1)(\mathcal{C}, \otimes , 1) has the structure of a symmetric monoidal category (def. ) (π’ž,βŠ—,1,B)(\mathcal{C}, \otimes, 1, B) with symmetric braiding Ο„\tau, then a monoid (A,ΞΌ,e)(A,\mu, e) as above is called a commutative monoid in (π’ž,βŠ—,1,B)(\mathcal{C}, \otimes, 1, B) if in addition

  • (commutativity) the following diagram commutes

    AβŠ—A βŸΆβ‰ƒΟ„ A,A AβŠ—A ΞΌβ†˜ ↙ ΞΌ A. \array{ A \otimes A && \underoverset{\simeq}{\tau_{A,A}}{\longrightarrow} && A \otimes A \\ & {}_{\mathllap{\mu}}\searrow && \swarrow_{\mathrlap{\mu}} \\ && A } \,.

A homomorphism of monoids (A 1,μ 1,e 1)⟢(A 2,μ 2,f 2)(A_1, \mu_1, e_1)\longrightarrow (A_2, \mu_2, f_2) is a morphism

f:A 1⟢A 2 f \;\colon\; A_1 \longrightarrow A_2

in π’ž\mathcal{C}, such that the following two diagrams commute

A 1βŠ—A 1 ⟢fβŠ—f A 2βŠ—A 2 ΞΌ 1↓ ↓ ΞΌ 2 A 1 ⟢f A 2 \array{ A_1 \otimes A_1 &\overset{f \otimes f}{\longrightarrow}& A_2 \otimes A_2 \\ {}^{\mathllap{\mu_1}}\downarrow && \downarrow^{\mathrlap{\mu_2}} \\ A_1 &\underset{f}{\longrightarrow}& A_2 }

and

1 𝒸 ⟢e 1 A 1 e 2β†˜ ↓ f A 2. \array{ 1_{\mathcal{c}} &\overset{e_1}{\longrightarrow}& A_1 \\ & {}_{\mathllap{e_2}}\searrow & \downarrow^{\mathrlap{f}} \\ && A_2 } \,.

Write Mon(π’ž,βŠ—,1)Mon(\mathcal{C}, \otimes,1) for the category of monoids in π’ž\mathcal{C}, and CMon(π’ž,βŠ—,1)CMon(\mathcal{C}, \otimes, 1) for its full subcategory of commutative monoids.

Example

Given a monoidal category (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (Def. ), the tensor unit 11 is a monoid in π’ž\mathcal{C} (def. ) with product given by either the left or right unitor

β„“ 1=r 1:1βŠ—1βŸΆβ‰ƒ1. \ell_1 = r_1 \;\colon\; 1 \otimes 1 \overset{\simeq}{\longrightarrow} 1 \,.

By lemma , these two morphisms coincide and define an associative product with unit the identity id:1β†’1id \colon 1 \to 1.

If (π’ž,βŠ—,1)(\mathcal{C}, \otimes , 1) is a symmetric monoidal category (def. ), then this monoid is a commutative monoid.

Example

Given a symmetric monoidal category (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. ), and given two commutative monoids (E i,ΞΌ i,e i)(E_i, \mu_i, e_i) i∈{1,2}i \in \{1,2\} (def. ), then the tensor product E 1βŠ—E 2E_1 \otimes E_2 becomes itself a commutative monoid with unit morphism

e:1βŸΆβ‰ƒ1βŠ—1⟢e 1βŠ—e 2E 1βŠ—E 2 e \;\colon\; 1 \overset{\simeq}{\longrightarrow} 1 \otimes 1 \overset{e_1 \otimes e_2}{\longrightarrow} E_1 \otimes E_2

(where the first isomorphism is, β„“ 1 βˆ’1=r 1 βˆ’1\ell_1^{-1} = r_1^{-1} (lemma )) and with product morphism given by

E 1βŠ—E 2βŠ—E 1βŠ—E 2⟢idβŠ—Ο„ E 2,E 1βŠ—idE 1βŠ—E 1βŠ—E 2βŠ—E 2⟢μ 1βŠ—ΞΌ 2E 1βŠ—E 2 E_1 \otimes E_2 \otimes E_1 \otimes E_2 \overset{id \otimes \tau_{E_2, E_1} \otimes id}{\longrightarrow} E_1 \otimes E_1 \otimes E_2 \otimes E_2 \overset{\mu_1 \otimes \mu_2}{\longrightarrow} E_1 \otimes E_2

(where we are notationally suppressing the associators and where Ο„\tau denotes the braiding of π’ž\mathcal{C}).

That this definition indeed satisfies associativity and commutativity follows from the corresponding properties of (E i,ΞΌ i,e i)(E_i,\mu_i, e_i), and from the hexagon identities for the braiding (def. ) and from symmetry of the braiding.

Similarly one checks that for E 1=E 2=EE_1 = E_2 = E then the unit maps

E≃EβŠ—1⟢idβŠ—eEβŠ—E E \simeq E \otimes 1 \overset{id \otimes e}{\longrightarrow} E \otimes E
E≃1βŠ—E⟢eβŠ—1EβŠ—E E \simeq 1 \otimes E \overset{e \otimes 1}{\longrightarrow} E \otimes E

and the product map

ΞΌ:EβŠ—E⟢E \mu \;\colon\; E \otimes E \longrightarrow E

and the braiding

Ο„ E,E:EβŠ—E⟢EβŠ—E \tau_{E,E} \;\colon\; E \otimes E \longrightarrow E \otimes E

are monoid homomorphisms, with EβŠ—EE \otimes E equipped with the above monoid structure.

Definition

Given a monoidal category (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. ), and given (A,ΞΌ,e)(A,\mu,e) a monoid in (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. ), then a left module object in (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) over (A,ΞΌ,e)(A,\mu,e) is

  1. an object Nβˆˆπ’žN \in \mathcal{C};

  2. a morphism ρ:AβŠ—N⟢N\rho \;\colon\; A \otimes N \longrightarrow N (called the action);

such that

  1. (unitality) the following diagram commutes:

    1βŠ—N ⟢eβŠ—id AβŠ—N β„“β†˜ ↓ ρ N, \array{ 1 \otimes N &\overset{e \otimes id}{\longrightarrow}& A \otimes N \\ & {}_{\mathllap{\ell}}\searrow & \downarrow^{\mathrlap{\rho}} \\ && N } \,,

    where β„“\ell is the left unitor isomorphism of π’ž\mathcal{C}.

  2. (action property) the following diagram commutes

    (AβŠ—A)βŠ—N βŸΆβ‰ƒa A,A,N AβŠ—(AβŠ—N) ⟢AβŠ—Ο AβŠ—N ΞΌβŠ—N↓ ↓ ρ AβŠ—N ⟢ ⟢ρ N, \array{ (A\otimes A) \otimes N &\underoverset{\simeq}{a_{A,A,N}}{\longrightarrow}& A \otimes (A \otimes N) &\overset{A \otimes \rho}{\longrightarrow}& A \otimes N \\ {}^{\mathllap{\mu \otimes N}}\downarrow && && \downarrow^{\mathrlap{\rho}} \\ A \otimes N &\longrightarrow& &\overset{\rho}{\longrightarrow}& N } \,,

A homomorphism of left AA-module objects

(N 1,ρ 1)⟢(N 2,ρ 2) (N_1, \rho_1) \longrightarrow (N_2, \rho_2)

is a morphism

f:N 1⟢N 2 f\;\colon\; N_1 \longrightarrow N_2

in π’ž\mathcal{C}, such that the following diagram commutes:

AβŠ—N 1 ⟢AβŠ—f AβŠ—N 2 ρ 1↓ ↓ ρ 2 N 1 ⟢f N 2. \array{ A\otimes N_1 &\overset{A \otimes f}{\longrightarrow}& A\otimes N_2 \\ {}^{\mathllap{\rho_1}}\downarrow && \downarrow^{\mathrlap{\rho_2}} \\ N_1 &\underset{f}{\longrightarrow}& N_2 } \,.

For the resulting category of modules of left AA-modules in π’ž\mathcal{C} with AA-module homomorphisms between them, we write

AMod(π’ž). A Mod(\mathcal{C}) \,.
Example

Given a monoidal category (π’ž,βŠ—,1)(\mathcal{C},\otimes, 1) (def. ) with the tensor unit 11 regarded as a monoid in a monoidal category via example , then the left unitor

β„“ C:1βŠ—C⟢C \ell_C \;\colon\; 1\otimes C \longrightarrow C

makes every object Cβˆˆπ’žC \in \mathcal{C} into a left module, according to def. , over CC. The action property holds due to lemma . This gives an equivalence of categories

π’žβ‰ƒ1Mod(π’ž) \mathcal{C} \simeq 1 Mod(\mathcal{C})

of π’ž\mathcal{C} with the category of modules over its tensor unit.

Example

The archetypical case in which all these abstract concepts reduce to the basic familiar ones is the symmetric monoidal category Ab of abelian groups from example .

  1. A monoid in (Ab,βŠ— β„€,β„€)(Ab, \otimes_{\mathbb{Z}}, \mathbb{Z}) (def. ) is equivalently a ring.

  2. A commutative monoid in in (Ab,βŠ— β„€,β„€)(Ab, \otimes_{\mathbb{Z}}, \mathbb{Z}) (def. ) is equivalently a commutative ring RR.

  3. An RR-module object in (Ab,βŠ— β„€,β„€)(Ab, \otimes_{\mathbb{Z}}, \mathbb{Z}) (def. ) is equivalently an RR-module;

  4. The tensor product of RR-module objects (def. ) is the standard tensor product of modules.

  5. The category of module objects RMod(Ab)R Mod(Ab) (def. ) is the standard category of modules RModR Mod.

Example

Closely related to the example , but closer to the structure we will see below for spectra, are monoids in the category of chain complexes (Ch β€’,βŠ—,β„€)(Ch_\bullet, \otimes, \mathbb{Z}) from example . These monoids are equivalently differential graded algebras.

Proposition

In the situation of def. , the monoid (A,ΞΌ,e)(A,\mu, e) canonically becomes a left module over itself by setting ρ≔μ\rho \coloneqq \mu. More generally, for Cβˆˆπ’žC \in \mathcal{C} any object, then AβŠ—CA \otimes C naturally becomes a left AA-module by setting:

ρ:AβŠ—(AβŠ—C)βŸΆβ‰ƒa A,A,C βˆ’1(AβŠ—A)βŠ—CβŸΆΞΌβŠ—idAβŠ—C. \rho \;\colon\; A \otimes (A \otimes C) \underoverset{\simeq}{a^{-1}_{A,A,C}}{\longrightarrow} (A \otimes A) \otimes C \overset{\mu \otimes id}{\longrightarrow} A \otimes C \,.

The AA-modules of this form are called free modules.

The free functor FF constructing free AA-modules is left adjoint to the forgetful functor UU which sends a module (N,ρ)(N,\rho) to the underlying object U(N,ρ)≔NU(N,\rho) \coloneqq N.

AMod(π’ž)βŠ₯⟢U⟡Fπ’ž. A Mod(\mathcal{C}) \underoverset {\underset{U}{\longrightarrow}} {\overset{F}{\longleftarrow}} {\bot} \mathcal{C} \,.
Proof

A homomorphism out of a free AA-module is a morphism in π’ž\mathcal{C} of the form

f:AβŠ—C⟢N f \;\colon\; A\otimes C \longrightarrow N

fitting into the diagram (where we are notationally suppressing the associator)

AβŠ—AβŠ—C ⟢AβŠ—f AβŠ—N ΞΌβŠ—id↓ ↓ ρ AβŠ—C ⟢f N. \array{ A \otimes A \otimes C &\overset{A \otimes f}{\longrightarrow}& A \otimes N \\ {}^{\mathllap{\mu \otimes id}}\downarrow && \downarrow^{\mathrlap{\rho}} \\ A \otimes C &\underset{f}{\longrightarrow}& N } \,.

Consider the composite

f˜:CβŸΆβ‰ƒβ„“ C1βŠ—C⟢eβŠ—idAβŠ—C⟢fN, \tilde f \;\colon\; C \underoverset{\simeq}{\ell_C}{\longrightarrow} 1 \otimes C \overset{e\otimes id}{\longrightarrow} A \otimes C \overset{f}{\longrightarrow} N \,,

i.e. the restriction of ff to the unit β€œin” AA. By definition, this fits into a commuting square of the form (where we are now notationally suppressing the associator and the unitor)

AβŠ—C ⟢idβŠ—f˜ AβŠ—N idβŠ—eβŠ—id↓ ↓ = AβŠ—AβŠ—C ⟢idβŠ—f AβŠ—N. \array{ A \otimes C &\overset{id \otimes \tilde f}{\longrightarrow}& A \otimes N \\ {}^{\mathllap{id \otimes e \otimes id}}\downarrow && \downarrow^{\mathrlap{=}} \\ A \otimes A \otimes C &\underset{id \otimes f}{\longrightarrow}& A \otimes N } \,.

Pasting this square onto the top of the previous one yields

AβŠ—C ⟢idβŠ—f˜ AβŠ—N idβŠ—eβŠ—id↓ ↓ = AβŠ—AβŠ—C ⟢AβŠ—f AβŠ—N ΞΌβŠ—id↓ ↓ ρ AβŠ—C ⟢f N, \array{ A \otimes C &\overset{id \otimes \tilde f}{\longrightarrow}& A \otimes N \\ {}^{\mathllap{id \otimes e \otimes id}}\downarrow && \downarrow^{\mathrlap{=}} \\ A \otimes A \otimes C &\overset{A \otimes f}{\longrightarrow}& A \otimes N \\ {}^{\mathllap{\mu \otimes id}}\downarrow && \downarrow^{\mathrlap{\rho}} \\ A \otimes C &\underset{f}{\longrightarrow}& N } \,,

where now the left vertical composite is the identity, by the unit law in AA. This shows that ff is uniquely determined by f˜\tilde f via the relation

f=ρ∘(id AβŠ—f˜). f = \rho \circ (id_A \otimes \tilde f) \,.

This natural bijection between ff and f˜\tilde f establishes the adjunction.

Definition

Given a closed symmetric monoidal category (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. , def. ), given (A,ΞΌ,e)(A,\mu,e) a commutative monoid in (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. ), and given (N 1,ρ 1)(N_1, \rho_1) and (N 2,ρ 2)(N_2, \rho_2) two left AA-module objects (def.), then

  1. the tensor product of modules N 1βŠ— AN 2N_1 \otimes_A N_2 is, if it exists, the coequalizer

    N 1βŠ—AβŠ—N 2AAAA⟢ρ 1∘(Ο„ N 1,AβŠ—N 2)⟢N 1βŠ—Ο 2N 1βŠ—N 1⟢coeqN 1βŠ— AN 2 N_1 \otimes A \otimes N_2 \underoverset {\underset{\rho_{1}\circ (\tau_{N_1,A} \otimes N_2)}{\longrightarrow}} {\overset{N_1 \otimes \rho_2}{\longrightarrow}} {\phantom{AAAA}} N_1 \otimes N_1 \overset{coeq}{\longrightarrow} N_1 \otimes_A N_2

    and if AβŠ—(βˆ’)A \otimes (-) preserves these coequalizers, then this is equipped with the left AA-action induced from the left AA-action on N 1N_1

  2. the function module hom A(N 1,N 2)hom_A(N_1,N_2) is, if it exists, the equalizer

    hom A(N 1,N 2)⟢equhom(N 1,N 2)AAAAAA⟢hom(AβŠ—N 1,ρ 2)∘(AβŠ—(βˆ’))⟢hom(ρ 1,N 2)hom(AβŠ—N 1,N 2). hom_A(N_1, N_2) \overset{equ}{\longrightarrow} hom(N_1, N_2) \underoverset {\underset{hom(A \otimes N_1, \rho_2)\circ (A \otimes(-))}{\longrightarrow}} {\overset{hom(\rho_1,N_2)}{\longrightarrow}} {\phantom{AAAAAA}} hom(A \otimes N_1, N_2) \,.

    equipped with the left AA-action that is induced by the left AA-action on N 2N_2 via

    AβŠ—hom(X,N 2)⟢hom(X,N 2)AβŠ—hom(X,N 2)βŠ—X⟢idβŠ—evAβŠ—N 2⟢ρ 2N 2. \frac{ A \otimes hom(X,N_2) \longrightarrow hom(X,N_2) }{ A \otimes hom(X,N_2) \otimes X \overset{id \otimes ev}{\longrightarrow} A \otimes N_2 \overset{\rho_2}{\longrightarrow} N_2 } \,.

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2 and lemma 2.2.8)

Proposition

Given a closed symmetric monoidal category (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. , def. ), and given (A,ΞΌ,e)(A,\mu,e) a commutative monoid in (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) (def. ). If all coequalizers exist in π’ž\mathcal{C}, then the tensor product of modules βŠ— A\otimes_A from def. makes the category of modules AMod(π’ž)A Mod(\mathcal{C}) into a symmetric monoidal category, (AMod,βŠ— A,A)(A Mod, \otimes_A, A) with tensor unit the object AA itself, regarded as an AA-module via prop. .

If moreover all equalizers exist, then this is a closed monoidal category (def. ) with internal hom given by the function modules hom Ahom_A of def. .

(e.g. Hovey-Shipley-Smith 00, lemma 2.2.2, lemma 2.2.8)

Proof sketch

The associators and braiding for βŠ— A\otimes_{A} are induced directly from those of βŠ—\otimes and the universal property of coequalizers. That AA is the tensor unit for βŠ— A\otimes_{A} follows with the same kind of argument that we give in the proof of example below.

Example

For (A,ΞΌ,e)(A,\mu,e) a monoid (def. ) in a symmetric monoidal category (π’ž,βŠ—,1)(\mathcal{C},\otimes, 1) (def. ), the tensor product of modules (def. ) of two free modules (def. ) AβŠ—C 1A\otimes C_1 and AβŠ—C 2A \otimes C_2 always exists and is the free module over the tensor product in π’ž\mathcal{C} of the two generators:

(AβŠ—C 1)βŠ— A(AβŠ—C 2)≃AβŠ—(C 1βŠ—C 2). (A \otimes C_1) \otimes_A (A \otimes C_2) \simeq A \otimes (C_1 \otimes C_2) \,.

Hence if π’ž\mathcal{C} has all coequalizers, so that the category of modules is a monoidal category (AMod,βŠ— A,A)(A Mod, \otimes_A, A) (prop. ) then the free module functor (def. ) is a strong monoidal functor (def. )

F:(π’ž,βŠ—,1)⟢(AMod,βŠ— A,A). F \;\colon\; (\mathcal{C}, \otimes, 1) \longrightarrow (A Mod, \otimes_A, A) \,.
Proof

It is sufficient to show that the diagram

AβŠ—AβŠ—AAAAA⟢idβŠ—ΞΌβŸΆΞΌβŠ—idAβŠ—A⟢μA A \otimes A \otimes A \underoverset {\underset{id \otimes \mu}{\longrightarrow}} {\overset{\mu \otimes id}{\longrightarrow}} {\phantom{AAAA}} A \otimes A \overset{\mu}{\longrightarrow} A

is a coequalizer diagram (we are notationally suppressing the associators), hence that AβŠ— AA≃AA \otimes_A A \simeq A, hence that the claim holds for C 1=1C_1 = 1 and C 2=1C_2 = 1.

To that end, we check the universal property of the coequalizer:

First observe that ΞΌ\mu indeed coequalizes idβŠ—ΞΌid \otimes \mu with ΞΌβŠ—id\mu \otimes id, since this is just the associativity clause in def. . So for f:AβŠ—A⟢Qf \colon A \otimes A \longrightarrow Q any other morphism with this property, we need to show that there is a unique morphism Ο•:A⟢Q\phi \colon A \longrightarrow Q which makes this diagram commute:

AβŠ—A ⟢μ A f↓ ↙ Ο• Q. \array{ A \otimes A &\overset{\mu}{\longrightarrow}& A \\ {}^{\mathllap{f}}\downarrow & \swarrow_{\mathrlap{\phi}} \\ Q } \,.

We claim that

Ο•:AβŸΆβ‰ƒr βˆ’1AβŠ—1⟢idβŠ—eAβŠ—A⟢fQ, \phi \;\colon\; A \underoverset{\simeq}{r^{-1}}{\longrightarrow} A \otimes 1 \overset{id \otimes e}{\longrightarrow} A \otimes A \overset{f}{\longrightarrow} Q \,,

where the first morphism is the inverse of the right unitor of π’ž\mathcal{C}.

First to see that this does make the required triangle commute, consider the following pasting composite of commuting diagrams

AβŠ—A ⟢μ A ≃ idβŠ—r βˆ’1↓ ↓ ≃ r βˆ’1 AβŠ—AβŠ—1 βŸΆΞΌβŠ—id AβŠ—1 idβŠ—e↓ ↓ idβŠ—e AβŠ—AβŠ—A βŸΆΞΌβŠ—id AβŠ—A idβŠ—ΞΌβ†“ ↓ f AβŠ—A ⟢f Q. \array{ A \otimes A &\overset{\mu}{\longrightarrow}& A \\ {}^{\mathllap{id \otimes r^{-1}}}_{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{r^{-1}}}_{\simeq} \\ A \otimes A \otimes 1 &\overset{\mu \otimes id}{\longrightarrow}& A \otimes 1 \\ {}^{\mathllap{id \otimes e}}\downarrow && \downarrow^{\mathrlap{id \otimes e} } \\ A \otimes A \otimes A &\overset{\mu \otimes id}{\longrightarrow}& A \otimes A \\ {}^{\mathllap{id \otimes \mu}}\downarrow && \downarrow^{\mathrlap{f}} \\ A \otimes A &\underset{f}{\longrightarrow}& Q } \,.

Here the the top square is the naturality of the right unitor, the middle square commutes by the functoriality of the tensor product βŠ—:π’žΓ—π’žβŸΆπ’ž\otimes \;\colon\; \mathcal{C}\times \mathcal{C} \longrightarrow \mathcal{C} and the definition of the product category (Example ), while the commutativity of the bottom square is the assumption that ff coequalizes idβŠ—ΞΌid \otimes \mu with ΞΌβŠ—id\mu \otimes id.

Here the right vertical composite is Ο•\phi, while, by unitality of (A,ΞΌ,e)(A,\mu ,e), the left vertical composite is the identity on AA, Hence the diagram says that Ο•βˆ˜ΞΌ=f\phi \circ \mu = f, which we needed to show.

It remains to see that Ο•\phi is the unique morphism with this property for given ff. For that let q:Aβ†’Qq \colon A \to Q be any other morphism with q∘μ=f q\circ \mu = f. Then consider the commuting diagram

AβŠ—1 βŸ΅β‰ƒ A idβŠ—e↓ β†˜ ≃ ↓ = AβŠ—A ⟢μ A f↓ ↙ q Q, \array{ A \otimes 1 &\overset{\simeq}{\longleftarrow}& A \\ {}^{\mathllap{id\otimes e}}\downarrow & \searrow^{\simeq} & \downarrow^{\mathrlap{=}} \\ A \otimes A &\overset{\mu}{\longrightarrow}& A \\ {}^{\mathllap{f}}\downarrow & \swarrow_{\mathrlap{q}} \\ Q } \,,

where the top left triangle is the unitality condition and the two isomorphisms are the right unitor and its inverse. The commutativity of this diagram says that q=Ο•q = \phi.

Definition

Given a monoidal category of modules (AMod,βŠ— A,A)(A Mod , \otimes_A , A) as in prop. , then a monoid (E,ΞΌ,e)(E, \mu, e) in (AMod,βŠ— A,A)(A Mod , \otimes_A , A) (def. ) is called an AA-algebra.

Proposition

Given a monoidal category of modules (AMod,βŠ— A,A)(A Mod , \otimes_A , A) in a monoidal category (π’ž,βŠ—,1)(\mathcal{C},\otimes, 1) as in prop. , and an AA-algebra (E,ΞΌ,e)(E,\mu,e) (def. ), then there is an equivalence of categories

AAlg comm(π’ž)≔CMon(AMod)≃CMon(π’ž) A/ A Alg_{comm}(\mathcal{C}) \coloneqq CMon(A Mod) \simeq CMon(\mathcal{C})^{A/}

between the category of commutative monoids in AModA Mod and the coslice category of commutative monoids in π’ž\mathcal{C} under AA, hence between commutative AA-algebras in π’ž\mathcal{C} and commutative monoids EE in π’ž\mathcal{C} that are equipped with a homomorphism of monoids A⟢EA \longrightarrow E.

(e.g. EKMM 97, VII lemma 1.3)

Proof

In one direction, consider a AA-algebra EE with unit e E:A⟢Ee_E \;\colon\; A \longrightarrow E and product ΞΌ E/A:EβŠ— AE⟢E\mu_{E/A} \colon E \otimes_A E \longrightarrow E. There is the underlying product ΞΌ E\mu_E

EβŠ—AβŠ—E AAA⟢⟢ EβŠ—E ⟢coeq EβŠ— AE ΞΌ Eβ†˜ ↓ ΞΌ E/A E. \array{ E \otimes A \otimes E & \underoverset {\underset{}{\longrightarrow}} {\overset{}{\longrightarrow}} {\phantom{AAA}} & E \otimes E &\overset{coeq}{\longrightarrow}& E \otimes_A E \\ && & {}_{\mathllap{\mu_E}}\searrow & \downarrow^{\mathrlap{\mu_{E/A}}} \\ && && E } \,.

By considering a diagram of such coequalizer diagrams with middle vertical morphism e E∘e Ae_E\circ e_A, one find that this is a unit for ΞΌ E\mu_E and that (E,ΞΌ E,e E∘e A)(E, \mu_E, e_E \circ e_A) is a commutative monoid in (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1).

Then consider the two conditions on the unit e E:A⟢Ee_E \colon A \longrightarrow E. First of all this is an AA-module homomorphism, which means that

(⋆)AβŠ—A ⟢idβŠ—e E AβŠ—E ΞΌ A↓ ↓ ρ A ⟢e E E (\star) \;\;\;\;\; \;\;\;\;\; \array{ A \otimes A &\overset{id \otimes e_E}{\longrightarrow}& A \otimes E \\ {}^{\mathllap{\mu_A}}\downarrow && \downarrow^{\mathrlap{\rho}} \\ A &\underset{e_E}{\longrightarrow}& E }

commutes. Moreover it satisfies the unit property

AβŠ— AE ⟢e AβŠ—id EβŠ— AE β‰ƒβ†˜ ↓ ΞΌ E/A E. \array{ A \otimes_A E &\overset{e_A \otimes id}{\longrightarrow}& E \otimes_A E \\ & {}_{\mathllap{\simeq}}\searrow & \downarrow^{\mathrlap{\mu_{E/A}}} \\ && E } \,.

By forgetting the tensor product over AA, the latter gives

AβŠ—E ⟢eβŠ—id EβŠ—E ↓ ↓ AβŠ— AE ⟢e EβŠ—id EβŠ— AE ≃↓ ↓ ΞΌ E/A E = E≃AβŠ—E ⟢e EβŠ—id EβŠ—E ρ↓ ↓ ΞΌ E E ⟢id E, \array{ A \otimes E &\overset{e \otimes id}{\longrightarrow}& E \otimes E \\ \downarrow && \downarrow^{\mathrlap{}} \\ A \otimes_A E &\overset{e_E \otimes id}{\longrightarrow}& E \otimes_A E \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\mu_{E/A}}} \\ E &=& E } \;\;\;\;\;\;\;\; \simeq \;\;\;\;\;\;\;\; \array{ A \otimes E &\overset{e_E \otimes id}{\longrightarrow}& E \otimes E \\ {}^{\mathllap{\rho}}\downarrow && \downarrow^{\mathrlap{\mu_{E}}} \\ E &\underset{id}{\longrightarrow}& E } \,,

where the top vertical morphisms on the left the canonical coequalizers, which identifies the vertical composites on the right as shown. Hence this may be pasted to the square (⋆)(\star) above, to yield a commuting square

AβŠ—A ⟢idβŠ—e E AβŠ—E ⟢e EβŠ—id EβŠ—E ΞΌ A↓ ρ↓ ↓ ΞΌ E A ⟢e E E ⟢id E=AβŠ—A ⟢e EβŠ—e E EβŠ—E ΞΌ A↓ ↓ ΞΌ E A ⟢e E E. \array{ A \otimes A &\overset{id\otimes e_E}{\longrightarrow}& A \otimes E &\overset{e_E \otimes id}{\longrightarrow}& E \otimes E \\ {}^{\mathllap{\mu_A}}\downarrow && {}^{\mathllap{\rho}}\downarrow && \downarrow^{\mathrlap{\mu_{E}}} \\ A &\underset{e_E}{\longrightarrow}& E &\underset{id}{\longrightarrow}& E } \;\;\;\;\;\;\;\;\;\; = \;\;\;\;\;\;\;\;\;\; \array{ A \otimes A &\overset{e_E \otimes e_E}{\longrightarrow}& E \otimes E \\ {}^{\mathllap{\mu_A}}\downarrow && \downarrow^{\mathrlap{\mu_E}} \\ A &\underset{e_E}{\longrightarrow}& E } \,.

This shows that the unit e Ae_A is a homomorphism of monoids (A,μ A,e A)⟢(E,μ E,e E∘e A)(A,\mu_A, e_A) \longrightarrow (E, \mu_E, e_E\circ e_A).

Now for the converse direction, assume that (A,ΞΌ A,e A)(A,\mu_A, e_A) and (E,ΞΌ E,eβ€² E)(E, \mu_E, e'_E) are two commutative monoids in (π’ž,βŠ—,1)(\mathcal{C}, \otimes, 1) with e E:Aβ†’Ee_E \;\colon\; A \to E a monoid homomorphism. Then EE inherits a left AA-module structure by

ρ:AβŠ—E⟢e AβŠ—idEβŠ—E⟢μ EE. \rho \;\colon\; A \otimes E \overset{e_A \otimes id}{\longrightarrow} E \otimes E \overset{\mu_E}{\longrightarrow} E \,.

By commutativity and associativity it follows that ΞΌ E\mu_E coequalizes the two induced morphisms EβŠ—AβŠ—EAA⟢⟢EβŠ—EE \otimes A \otimes E \underoverset{\longrightarrow}{\longrightarrow}{\phantom{AA}} E \otimes E. Hence the universal property of the coequalizer gives a factorization through some ΞΌ E/A:EβŠ— AE⟢E\mu_{E/A}\colon E \otimes_A E \longrightarrow E. This shows that (E,ΞΌ E/A,e E)(E, \mu_{E/A}, e_E) is a commutative AA-algebra.

Finally one checks that these two constructions are inverses to each other, up to isomorphism.

Definition

(lax monoidal functor)

Let (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) be two monoidal categories (def. ). A lax monoidal functor between them is

  1. a functor

    F:π’žβŸΆπ’Ÿ, F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D} \,,
  2. a morphism

    Ο΅:1 π’ŸβŸΆF(1 π’ž) \epsilon \;\colon\; 1_{\mathcal{D}} \longrightarrow F(1_{\mathcal{C}})
  3. a natural transformation

    ΞΌ x,y:F(x)βŠ— π’ŸF(y)⟢F(xβŠ— π’žy) \mu_{x,y} \;\colon\; F(x) \otimes_{\mathcal{D}} F(y) \longrightarrow F(x \otimes_{\mathcal{C}} y)

    for all x,yβˆˆπ’žx,y \in \mathcal{C}

satisfying the following conditions:

  1. (associativity) For all objects x,y,zβˆˆπ’žx,y,z \in \mathcal{C} the following diagram commutes

    (F(x)βŠ— π’ŸF(y))βŠ— π’ŸF(z) βŸΆβ‰ƒa F(x),F(y),F(z) π’Ÿ F(x)βŠ— π’Ÿ(F(y)βŠ— π’ŸF(z)) ΞΌ x,yβŠ—id↓ ↓ idβŠ—ΞΌ y,z F(xβŠ— π’žy)βŠ— π’ŸF(z) F(x)βŠ— π’Ÿ(F(xβŠ— π’žy)) ΞΌ xβŠ— π’žy,z↓ ↓ ΞΌ x,yβŠ— π’žz F((xβŠ— π’žy)βŠ— π’žz) ⟢F(a x,y,z π’ž) F(xβŠ— π’ž(yβŠ— π’žz)), \array{ (F(x) \otimes_{\mathcal{D}} F(y)) \otimes_{\mathcal{D}} F(z) &\underoverset{\simeq}{a^{\mathcal{D}}_{F(x),F(y),F(z)}}{\longrightarrow}& F(x) \otimes_{\mathcal{D}}( F(y)\otimes_{\mathcal{D}} F(z) ) \\ {}^{\mathllap{\mu_{x,y} \otimes id}}\downarrow && \downarrow^{\mathrlap{id\otimes \mu_{y,z}}} \\ F(x \otimes_{\mathcal{C}} y) \otimes_{\mathcal{D}} F(z) && F(x) \otimes_{\mathcal{D}} ( F(x \otimes_{\mathcal{C}} y) ) \\ {}^{\mathllap{\mu_{x \otimes_{\mathcal{C}} y , z} } }\downarrow && \downarrow^{\mathrlap{\mu_{ x, y \otimes_{\mathcal{C}} z }}} \\ F( ( x \otimes_{\mathcal{C}} y ) \otimes_{\mathcal{C}} z ) &\underset{F(a^{\mathcal{C}}_{x,y,z})}{\longrightarrow}& F( x \otimes_{\mathcal{C}} ( y \otimes_{\mathcal{C}} z ) ) } \,,

    where a π’ža^{\mathcal{C}} and a π’Ÿa^{\mathcal{D}} denote the associators of the monoidal categories;

  2. (unitality) For all xβˆˆπ’žx \in \mathcal{C} the following diagrams commutes

    1 π’ŸβŠ— π’ŸF(x) βŸΆΟ΅βŠ—id F(1 π’ž)βŠ— π’ŸF(x) β„“ F(x) π’Ÿβ†“ ↓ ΞΌ 1 π’ž,x F(x) ⟡F(β„“ x π’ž) F(1βŠ— π’žx) \array{ 1_{\mathcal{D}} \otimes_{\mathcal{D}} F(x) &\overset{\epsilon \otimes id}{\longrightarrow}& F(1_{\mathcal{C}}) \otimes_{\mathcal{D}} F(x) \\ {}^{\mathllap{\ell^{\mathcal{D}}_{F(x)}}}\downarrow && \downarrow^{\mathrlap{\mu_{1_{\mathcal{C}}, x }}} \\ F(x) &\overset{F(\ell^{\mathcal{C}}_x )}{\longleftarrow}& F(1 \otimes_{\mathcal{C}} x ) }

    and

    F(x)βŠ— π’Ÿ1 π’Ÿ ⟢idβŠ—Ο΅ F(x)βŠ— π’ŸF(1 π’ž) r F(x) π’Ÿβ†“ ↓ ΞΌ x,1 π’ž F(x) ⟡F(r x π’ž) F(xβŠ— π’ž1), \array{ F(x) \otimes_{\mathcal{D}} 1_{\mathcal{D}} &\overset{id \otimes \epsilon }{\longrightarrow}& F(x) \otimes_{\mathcal{D}} F(1_{\mathcal{C}}) \\ {}^{\mathllap{r^{\mathcal{D}}_{F(x)}}}\downarrow && \downarrow^{\mathrlap{\mu_{x, 1_{\mathcal{C}} }}} \\ F(x) &\overset{F(r^{\mathcal{C}}_x )}{\longleftarrow}& F(x \otimes_{\mathcal{C}} 1 ) } \,,

    where β„“ π’ž\ell^{\mathcal{C}}, β„“ π’Ÿ\ell^{\mathcal{D}}, r π’žr^{\mathcal{C}}, r π’Ÿr^{\mathcal{D}} denote the left and right unitors of the two monoidal categories, respectively.

If Ο΅\epsilon and alll ΞΌ x,y\mu_{x,y} are isomorphisms, then FF is called a strong monoidal functor.

If moreover (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) are equipped with the structure of braided monoidal categories (def. ) with braidings Ο„ π’ž\tau^{\mathcal{C}} and Ο„ π’Ÿ\tau^{\mathcal{D}}, respectively, then the lax monoidal functor FF is called a braided monoidal functor if in addition the following diagram commutes for all objects x,yβˆˆπ’žx,y \in \mathcal{C}

F(x)βŠ— π’žF(y) βŸΆΟ„ F(x),F(y) π’Ÿ F(y)βŠ— π’ŸF(x) ΞΌ x,y↓ ↓ ΞΌ y,x F(xβŠ— π’žy) ⟢F(Ο„ x,y π’ž) F(yβŠ— π’žx). \array{ F(x) \otimes_{\mathcal{C}} F(y) &\overset{\tau^{\mathcal{D}}_{F(x), F(y)}}{\longrightarrow}& F(y) \otimes_{\mathcal{D}} F(x) \\ {}^{\mathllap{\mu_{x,y}}}\downarrow && \downarrow^{\mathrlap{\mu_{y,x}}} \\ F(x \otimes_{\mathcal{C}} y ) &\underset{F(\tau^{\mathcal{C}}_{x,y} )}{\longrightarrow}& F( y \otimes_{\mathcal{C}} x ) } \,.

A homomorphism f:(F 1,μ 1,ϡ 1)⟢(F 2,μ 2,ϡ 2)f\;\colon\; (F_1,\mu_1, \epsilon_1) \longrightarrow (F_2, \mu_2, \epsilon_2) between two (braided) lax monoidal functors is a monoidal natural transformation, in that it is a natural transformation f x:F 1(x)⟢F 2(x)f_x \;\colon\; F_1(x) \longrightarrow F_2(x) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all objects x,yβˆˆπ’žx,y \in \mathcal{C}:

F 1(x)βŠ— π’ŸF 1(y) ⟢f(x)βŠ— π’Ÿf(y) F 2(x)βŠ— π’ŸF 2(y) (ΞΌ 1) x,y↓ ↓ (ΞΌ 2) x,y F 1(xβŠ— π’žy) ⟢f(xβŠ— π’žy) F 2(xβŠ— π’žy) \array{ F_1(x) \otimes_{\mathcal{D}} F_1(y) &\overset{f(x)\otimes_{\mathcal{D}} f(y)}{\longrightarrow}& F_2(x) \otimes_{\mathcal{D}} F_2(y) \\ {}^{\mathllap{(\mu_1)_{x,y}}}\downarrow && \downarrow^{\mathrlap{(\mu_2)_{x,y}}} \\ F_1(x\otimes_{\mathcal{C}} y) &\underset{f(x \otimes_{\mathcal{C}} y ) }{\longrightarrow}& F_2(x \otimes_{\mathcal{C}} y) }

and

1 π’Ÿ Ο΅ 1↙ β†˜ Ο΅ 2 F 1(1 π’ž) ⟢f(1 π’ž) F 2(1 π’ž). \array{ && 1_{\mathcal{D}} \\ & {}^{\mathllap{\epsilon_1}}\swarrow && \searrow^{\mathrlap{\epsilon_2}} \\ F_1(1_{\mathcal{C}}) &&\underset{f(1_{\mathcal{C}})}{\longrightarrow}&& F_2(1_{\mathcal{C}}) } \,.

We write MonFun(π’ž,π’Ÿ)MonFun(\mathcal{C},\mathcal{D}) for the resulting category of lax monoidal functors between monoidal categories π’ž\mathcal{C} and π’Ÿ\mathcal{D}, similarly BraidMonFun(π’ž,π’Ÿ)BraidMonFun(\mathcal{C},\mathcal{D}) for the category of braided monoidal functors between braided monoidal categories, and SymMonFun(π’ž,π’Ÿ)SymMonFun(\mathcal{C},\mathcal{D}) for the category of braided monoidal functors between symmetric monoidal categories.

Remark

In the literature the term β€œmonoidal functor” often refers by default to what in def. is called a strong monoidal functor. But for the purpose of the discussion of functors with smash product below, it is crucial to admit the generality of lax monoidal functors.

If (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) are symmetric monoidal categories (def. ) then a braided monoidal functor (def. ) between them is often called a symmetric monoidal functor.

Proposition

For π’žβŸΆFπ’ŸβŸΆGβ„°\mathcal{C} \overset{F}{\longrightarrow} \mathcal{D} \overset{G}{\longrightarrow} \mathcal{E} two composable lax monoidal functors (def. ) between monoidal categories, then their composite F∘GF \circ G becomes a lax monoidal functor with structure morphisms

Ο΅ G∘F:1 β„°βŸΆΟ΅ GG(1 π’Ÿ)⟢G(Ο΅ F)G(F(1 π’ž)) \epsilon^{G\circ F} \;\colon\; 1_{\mathcal{E}} \overset{\epsilon^G}{\longrightarrow} G(1_{\mathcal{D}}) \overset{G(\epsilon^F)}{\longrightarrow} G(F(1_{\mathcal{C}}))

and

ΞΌ c 1,c 2 G∘F:G(F(c 1))βŠ— β„°G(F(c 2))⟢μ F(c 1),F(c 2) GG(F(c 1)βŠ— π’ŸF(c 2))⟢G(ΞΌ c 1,c 2 F)G(F(c 1βŠ— π’žc 2)). \mu^{G \circ F}_{c_1,c_2} \;\colon\; G(F(c_1)) \otimes_{\mathcal{E}} G(F(c_2)) \overset{\mu^{G}_{F(c_1), F(c_2)}}{\longrightarrow} G( F(c_1) \otimes_{\mathcal{D}} F(c_2) ) \overset{G(\mu^F_{c_1,c_2})}{\longrightarrow} G(F( c_1 \otimes_{\mathcal{C}} c_2 )) \,.
Proposition

(lax monoidal functors preserve monoids)

Let (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D}, \otimes_{\mathcal{D}},1_{\mathcal{D}}) be two monoidal categories (def. ) and let F:π’žβŸΆπ’ŸF \;\colon\; \mathcal{C} \longrightarrow \mathcal{D} be a lax monoidal functor (def. ) between them.

Then for (A,ΞΌ A,e A)(A,\mu_A,e_A) a monoid in π’ž\mathcal{C} (def. ), its image F(A)βˆˆπ’ŸF(A) \in \mathcal{D} becomes a monoid (F(A),ΞΌ F(A),e F(A))(F(A), \mu_{F(A)}, e_{F(A)}) by setting

ΞΌ F(A):F(A)βŠ— π’žF(A)⟢F(AβŠ— π’žA)⟢F(ΞΌ A)F(A) \mu_{F(A)} \;\colon\; F(A) \otimes_{\mathcal{C}} F(A) \overset{}{\longrightarrow} F(A \otimes_{\mathcal{C}} A) \overset{F(\mu_A)}{\longrightarrow} F(A)

(where the first morphism is the structure morphism of FF) and setting

e F(A):1 π’ŸβŸΆF(1 π’ž)⟢F(e A)F(A) e_{F(A)} \;\colon\; 1_{\mathcal{D}} \longrightarrow F(1_{\mathcal{C}}) \overset{F(e_A)}{\longrightarrow} F(A)

(where again the first morphism is the corresponding structure morphism of FF).

This construction extends to a functor

Mon(F):Mon(π’ž,βŠ— π’ž,1 π’ž)⟢Mon(π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ) Mon(F) \;\colon\; Mon(\mathcal{C}, \otimes_{\mathcal{C}}, 1_{\mathcal{C}}) \longrightarrow Mon(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}})

from the category of monoids of π’ž\mathcal{C} (def. ) to that of π’Ÿ\mathcal{D}.

Moreover, if π’ž\mathcal{C} and π’Ÿ\mathcal{D} are symmetric monoidal categories (def. ) and FF is a braided monoidal functor (def. ) and AA is a commutative monoid (def. ) then so is F(A)F(A), and this construction extends to a functor between categories of commutative monoids:

CMon(F):CMon(π’ž,βŠ— π’ž,1 π’ž)⟢CMon(π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ). CMon(F) \;\colon\; CMon(\mathcal{C}, \otimes_{\mathcal{C}}, 1_{\mathcal{C}}) \longrightarrow CMon(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}}) \,.
Proof

This follows immediately from combining the associativity and unitality (and symmetry) constraints of FF with those of AA.

\,

Enriched categories

The plain definition of categories in Def. is phrased in terms of sets. Via Example this assigns a special role to the category Set of all sets, as the β€œbase” on top, or the β€œcosmos” inside which category theory takes place. For instance, the fact that hom-sets in a plain category are indeed sets, is what makes the hom-functor (Example ) take values in Set, and this, in turn, governs the form of the all-important Yoneda lemma (Prop. ) and Yoneda embedding (Prop. ) as statements about presheaves of sets (Example ).

At the same time, category theory witnesses the utility of abstracting away from concrete choices to their abstract properties that are actually used in constructions. This makes it natural to ask if one could replace the category Set by some other category 𝒱\mathcal{V} which could similarly serve as a β€œcosmos” inside which category theory may be developed.

Indeed, such 𝒱\mathcal{V}-enriched category theory (see Example below for the terminology) exists, beginning with the concept of 𝒱\mathcal{V}-enriched categories (Def. below) and from there directly paralleling, hence generalizing, plain category theory, as long as one assumes the β€œcosmos” category 𝒱\mathcal{V} to share a minimum of abstract properties with Set (Def. below).

This turns out to be most useful. In fact, the perspective of enriched categories is helpful already when 𝒱=\mathcal{V} = Set, in which case it reproduces plain category theory (Example below), for instance in that it puts the (co)limits of the special form of (co)ends (Def. below) to the forefront (discussed below).

\,

Definition

(cosmos)

A BΓ©nabou cosmos for enriched category theory, or just cosmos, for short, is a symmetric (Def. ) closed monoidal category (Def. ) 𝒱\mathcal{V} which has all limits and colimits.

Example

(examples of cosmoi for enriched category theory)

The following are examples of cosmoi (Def. ):

  1. Sh(π’ž)Sh(\mathcal{C}) the sheaf topos (Def. ) over any site (Def. ) – by Prop. below.

    In particular:

    1. Set (Def. ) equipped with its cartesian closed category-structure (Example )

    2. sSet≃[Ξ” op,Set]\simeq [\Delta^{op}, Set] (Def. , Prop. )

  2. Grpd (Def. ) equipped with its cartesian closed category-structure (Example ).

  3. Cat (Def. ) equipped with its cartesian closed category-structure (Example ).

Example

underlying set of an object in a cosmos

Let 𝒱\mathcal{V} be a cosmos (Def. ), with 1βˆˆπ’±1 \in \mathcal{V} its tensor unit (Def. ). Then the hom-functor (Def. ) out of 11

Hom 𝒱(1,βˆ’):π’±βŸΆSet Hom_{\mathcal{V}}(1,-) \;\colon\; \mathcal{V} \longrightarrow Set

admits the structure of a lax monoidal functor (Def. ) to Set, with the latter regarded with its cartesian monoidal structure from Example .

Given Vβˆˆπ’±V \in \mathcal{V}, we call

Hom 𝒱(1,V)∈Set Hom_{\mathcal{V}}(1,V) \;\in\; Set

also the underlying set of VV.

Proof

Take the monoidal transformations (eqβ€œMonoidalComponentsOfMonoidalFunctor) to be

Hom 𝒱(1,V 1)Γ—Hom 𝒱(1,V 2)⟢Hom 𝒱(1,V 1βŠ—V 2) (1β†’f 1V 1,1β†’f 2V 2) ↦ (1→≃1βŠ—1⟢f 1βŠ—f 2V 1βŠ—V 2) \array{ Hom_{\mathcal{V}}(1, V_1) \times Hom_{\mathcal{V}}(1, V_2) \longrightarrow Hom_{\mathcal{V}}(1, V_1 \otimes V_2) \\ \big( 1 \overset{f_1}{\to} V_1\;,\; 1 \overset{f_2}{\to} V_2 \big) &\mapsto& \big( 1 \overset{\simeq}{\to} 1 \otimes 1 \overset{f_1 \otimes f_2}{\longrightarrow} V_1 \otimes V_2 \big) }

and take the unit transformation (7)

* ⟢ Hom 𝒱(1,1) \array{ \ast &\longrightarrow& Hom_{\mathcal{V}}(1,1) }

to pick id 1∈Hom 𝒱(1,1)id_1 \in Hom_{\mathcal{V}}(1,1).

Example

(underlying set of internal hom is hom-set)*

For 𝒱\mathcal{V} a cosmos (Def. ), let X,Y∈Obj 𝒱X,Y \in Obj_{\mathcal{V}} be two objects. Then the underlying set (Def. ) of their internal hom [X,Y]βˆˆπ’±[X,Y] \in \mathcal{V} (Def. ) is the hom-set (Def. ):

ℋℴ𝓂 𝒱(1,[X,Y])≃Hom 𝒱(X,Y). \mathcal{Hom}_{\mathcal{V}}\left( 1, [X,Y]\right) \;\simeq\; Hom_{\mathcal{V}}(X,Y) \,.

This identification is the adjunction isomorphism (?) for the internal hom adjunction (2) followed composed with a unitor (Def. ).

Definition

(enriched category)

For 𝒱\mathcal{V} a cosmos (Def. ), a 𝒱\mathcal{V}-enriched category π’ž\mathcal{C} is:

  1. a class Obj π’žObj_{\mathcal{C}}, called the class of objects;

  2. for each a,b∈Obj π’ža, b\in Obj_{\mathcal{C}}, an object

    π’ž(a,b)βˆˆπ’±, \mathcal{C}(a,b)\in \mathcal{V} \,,

    called the 𝒱\mathcal{V}-object of morphisms between aa and bb;

  3. for each a,b,c∈Obj(π’ž)a,b,c\in Obj(\mathcal{C}) a morphism in 𝒱\mathcal{V}

    ∘ a,b,c:π’ž(a,b)Γ—π’ž(b,c)βŸΆπ’ž(a,c) \circ_{a,b,c} \;\colon\; \mathcal{C}(a,b)\times \mathcal{C}(b,c) \longrightarrow \mathcal{C}(a,c)

    out of the tensor product of hom-objects, called the composition operation;

  4. for each a∈Obj(π’ž)a \in Obj(\mathcal{C}) a morphism Id a:*β†’π’ž(a,a)Id_a \colon \ast \to \mathcal{C}(a,a), called the identity morphism on aa

such that the composition is associative and unital.

If the class Obj π’žObj_{\mathcal{C}} happens to be a set (hence a small set instead of a proper class) then we say the 𝒱\mathcal{V}-enriched category π’ž\mathcal{C} is small, as in Def. .

Example

(Set-enriched categories are plain categories)

An enriched category (Def. ) over the cosmos 𝒱=\mathcal{V} = Set, as in Example , is the same as a plain category (Def. ).

Example

(Cat-enriched categories are strict 2-categories)

An enriched category (Def. ) over the cosmos 𝒱=\mathcal{V} = Cat, as in Example , is the same as a strict 2-category (Def. ).

Example

(underlying category of an enriched category)

Let π’ž\mathcal{C} be a 𝒱\mathcal{V}-enriched category (Def. ).

Using the lax monoidal structure (Def. ) on the hom functor (Example )

Hom 𝒱(1,βˆ’):π’±βŸΆSet Hom_{\mathcal{V}}(1,-) \;\colon\; \mathcal{V} \longrightarrow Set

out of the tensor unit 1βˆˆπ’ž1 \in \mathcal{C} this induces a Set-enriched category |π’ž|\vert \mathcal{C}\vert with hence an ordinary category (Example ), with

  • Obj |π’ž|≔Obj π’žObj_{\vert \mathcal{C}\vert} \;\coloneqq\; Obj_{\mathcal{C}};

  • Hom |π’ž|(X,Y)≔Hom 𝒱(1,π’ž(X,Y))Hom_{\vert \mathcal{C}\vert}( X, Y ) \;\coloneqq\; Hom_{\mathcal{V}}(1, \mathcal{C}(X,Y)).

It is in this sense that π’ž\mathcal{C} is a plain category |π’ž|{\vert \mathcal{C}\vert} equipped with extra structure, and hence an β€œenriched category”.

The archetypical example is 𝒱\mathcal{V} itself:

Example

(𝒱\mathcal{V} as a 𝒱\mathcal{V}-enriched category)

Evert cosmos π’ž\mathcal{C} (Def. ) canonically obtains the structure of a 𝒱\mathcal{V}-enriched category, def. :

the hom-objects are the internal homs

𝓋(X,Y)≔[X,Y] \mathcal{v}(X,Y) \coloneqq [X,Y]

and with composition

[X,Y]Γ—[Y,Z]⟢[X,Z] [X,Y] \times [Y,Z] \longrightarrow [X,Z]

given by the adjunct under the (Cartesian product⊣\dashv internal hom)-adjunction of the evaluation morphisms

XβŠ—[XmY]βŠ—[Y,Z]⟢(ev,id)YβŠ—[Y,Z]⟢evZ. X \otimes [XmY] \otimes [Y,Z] \overset{(ev, id)}{\longrightarrow} Y \otimes [Y,Z] \overset{ev}{\longrightarrow} Z \,.

The usual construction on categories, such as that of opposite categories (Def. ) and product categories (Def. ) have evident enriched analogs

Definition

(enriched opposite category and product category)

For 𝒱\mathcal{V} a cosmos, let π’ž,π’Ÿ\mathcal{C}, \mathcal{D} be 𝒱\mathcal{V}-enriched categories (Def. ).

  1. The opposite enriched category π’ž op\mathcal{C}^{op} is the enriched category with the same objects as π’ž\mathcal{C}, with hom-objects

    π’ž op(X,Y)β‰”π’ž(Y,X) \mathcal{C}^{op}(X,Y) \coloneqq \mathcal{C}(Y,X)

    and with composition given by braiding (1) followed by the composition in π’ž\mathcal{C}:

    π’ž op(X,Y)βŠ—π’ž op(Y,Z)=π’ž(Y,X)βŠ—π’ž(Z,Y)βŸΆβ‰ƒΟ„π’ž(Z,Y)βŠ—π’ž(Y,X)⟢∘ Z,Y,Xπ’ž(Z,X)=π’ž op(X,Z). \mathcal{C}^{op}(X,Y) \otimes \mathcal{C}^{op}(Y,Z) = \mathcal{C}(Y,X) \otimes \mathcal{C}(Z,Y) \underoverset{\simeq}{\tau}{\longrightarrow} \mathcal{C}(Z,Y) \otimes \mathcal{C}(Y,X) \overset{\circ_{Z,Y,X}}{\longrightarrow} \mathcal{C}(Z,X) = \mathcal{C}^{op}(X,Z) \,.
  2. the enriched product category π’žΓ—π’Ÿ\mathcal{C} \times \mathcal{D} is the enriched category whose objects are pairs of objects (c,d)(c,d) with cβˆˆπ’žc \in \mathcal{C} and dβˆˆπ’Ÿd\in \mathcal{D}, whose hom-spaces are the tensor product of the separate hom objects

    (π’žΓ—π’Ÿ)((c 1,d 1),(c 2,d 2))β‰”π’ž(c 1,c 2)βŠ—π’Ÿ(d 1,d 2) (\mathcal{C}\times \mathcal{D})((c_1,d_1),\;(c_2,d_2) ) \coloneqq \mathcal{C}(c_1,c_2)\otimes \mathcal{D}(d_1,d_2)

    and whose composition operation is the braiding (1) followed by the tensor product of the separate composition operations:

    (π’žΓ—π’Ÿ)((c 1,d 1),(c 2,d 2))βŠ—(π’žΓ—π’Ÿ)((c 2,d 2),(c 3,d 3)) =↓ (π’ž(c 1,c 2)βŠ—π’Ÿ(d 1,d 2))βŠ—(π’ž(c 2,c 3)βŠ—π’Ÿ(d 2,d 3)) ↓ ≃ Ο„ (π’ž(c 1,c 2)βŠ—π’ž(c 2,c 3))βŠ—(π’Ÿ(d 1,d 2)βŠ—π’Ÿ(d 2,d 3)) ⟢(∘ c 1,c 2,c 3)βŠ—(∘ d 1,d 2,d 3) π’ž(c 1,c 3)βŠ—π’Ÿ(d 1,d 3) ↓ = (π’žΓ—π’Ÿ)((c 1,d 1),(c 3,d 3)). \array{ (\mathcal{C}\times \mathcal{D})((c_1,d_1), \; (c_2,d_2)) \otimes (\mathcal{C}\times \mathcal{D})((c_2,d_2), \; (c_3,d_3)) \\ {}^{\mathllap{=}}\downarrow \\ \left(\mathcal{C}(c_1,c_2) \otimes \mathcal{D}(d_1,d_2)\right) \otimes \left(\mathcal{C}(c_2,c_3) \otimes \mathcal{D}(d_2,d_3)\right) \\ \downarrow^{\mathrlap{\tau}}_{\mathrlap{\simeq}} \\ \left(\mathcal{C}(c_1,c_2) \otimes \mathcal{C}(c_2,c_3)\right) \otimes \left( \mathcal{D}(d_1,d_2) \otimes \mathcal{D}(d_2,d_3)\right) &\overset{ (\circ_{c_1,c_2,c_3}) \otimes (\circ_{d_1,d_2,d_3}) }{\longrightarrow} & \mathcal{C}(c_1,c_3) \otimes \mathcal{D}(d_1,d_3) \\ && \downarrow^{\mathrlap{=}} \\ && (\mathcal{C}\times \mathcal{D})((c_1,d_1),\; (c_3,d_3)) } \,.
Definition

(enriched functor)

For 𝒱\mathcal{V} a cosmos (Def. ), let π’ž\mathcal{C} and π’Ÿ\mathcal{D} be two 𝒱\mathcal{V}-enriched categories (Def. ).

A 𝒱\mathcal{V}-enriched functor from π’ž\mathcal{C} to π’Ÿ\mathcal{D}

F:π’žβŸΆπ’Ÿ F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D}

is

  1. a function

    F Obj:Obj π’žβŸΆObj π’Ÿ F_{Obj} \;\colon\; Obj_{\mathcal{C}} \longrightarrow Obj_{\mathcal{D}}

    of objects;

  2. for each a,b∈Obj π’ža,b \in Obj_{\mathcal{C}} a morphism in 𝒱\mathcal{V}

    F a,b:π’ž(a,b)βŸΆπ’Ÿ(F 0(a),F 0(b)) F_{a,b} \;\colon\; \mathcal{C}(a,b) \longrightarrow \mathcal{D}(F_0(a), F_0(b))

    between hom-objects

such that this preserves composition and identity morphisms in the evident sense.

Example

(enriched hom-functor)

For 𝒱\mathcal{V} a cosmos (Def. ), let π’ž\mathcal{C} be a 𝒱\mathcal{V}-enriched category (Def. ). Then there is a 𝒱\mathcal{V}-enriched functor out of the enriched product category of π’ž\mathcal{C} with its enriched opposite category (Def. )

π’ž(βˆ’,βˆ’):π’ž opΓ—π’žβŸΆπ’± \mathcal{C}(-,-) \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{V}

to 𝒱\mathcal{V}, regarded as a 𝒱\mathcal{V}-enriched category (Example ), which sends a pair of objects X,Yβˆˆπ’žX,Y \in \mathcal{C} to the hom-object π’ž(X,Y)βˆˆπ’±\mathcal{C}(X,Y) \in \mathcal{V}, and which acts on morphisms by composition in the evident way.

Example

(enriched presheaves)

For 𝒱\mathcal{V} a cosmos (Def. ), let π’ž\mathcal{C} be a 𝒱\mathcal{V}-enriched category (Def. ). Then a 𝒱\mathcal{V}-enriched functor (Def. )

F:π’žβŸΆπ’± F \;\colon\; \mathcal{C} \longrightarrow \mathcal{V}

to the archetypical 𝒱\mathcal{V}-enriched category from Example is:

  1. an object F a∈Obj 𝒱F_a \in Obj_{\mathcal{V}} for each object a∈Obj π’ža \in Obj_{\mathcal{C}};

  2. a morphism in 𝒱\mathcal{V} of the form

    F aβŠ—π’ž(a,b)⟢F b F_a \otimes \mathcal{C}(a,b) \longrightarrow F_b

    for all pairs of objects a,b∈Obj(π’ž)a,b \in Obj(\mathcal{C})

    (this is the adjunct of F a,bF_{a,b} under the adjunction (2) on 𝒱\mathcal{V})

such that composition is respected, in the evident sense.

For every object cβˆˆπ’žc \in \mathcal{C}, there is an enriched representable functor, denoted

y(c)β‰”π’ž(c,βˆ’) y(c) \;\coloneqq\; \mathcal{C}(c,-)

(where on the right we have the enriched hom-functor from Example )

which sends objects to

y(c)(d)=π’ž(c,d)βˆˆπ’± y(c)(d) = \mathcal{C}(c,d) \in \mathcal{V}

and whose action on morphisms is, under the above identification, just the composition operation in π’ž\mathcal{C}.

More generally, the following situation will be of interest:

Example

(enriched functor on enriched product category with opposite category)

An 𝒱\mathcal{V}-enriched functor (Def. ) into 𝒱\mathcal{V} (Example ) out of an enriched product category (Def. )

F:π’žΓ—π’ŸβŸΆπ’± F \;\colon\; \mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{V}

(an β€œenriched bifunctor”) has component morphisms of the form

F (c 1,d 1),(c 2,d 2):π’ž(c 1,c 2)βŠ—π’Ÿ(d 1,d 2)⟢[F 0((c 1,d 1)),F 0((c 2,d 2))]. F_{(c_1,d_1),(c_2,d_2)} \;\colon\; \mathcal{C}(c_1,c_2) \otimes \mathcal{D}(d_1,d_2) \longrightarrow \big[ F_0((c_1,d_1)),F_0((c_2,d_2)) \big] \,.

By functoriality and under passing to adjuncts (Def. ) under (2) this is equivalent to two commuting actions

ρ c 1,c 2(d):π’ž(c 1,c 2)βŠ—F 0((c 1,d))⟢F 0((c 2,d)) \rho_{c_1,c_2}(d) \;\colon\; \mathcal{C}(c_1,c_2) \otimes F_0((c_1,d)) \longrightarrow F_0((c_2,d))

and

ρ d 1,d 2(c):π’Ÿ(d 1,d 2)βŠ—F 0((c,d 1))⟢F 0((c,d 2)). \rho_{d_1,d_2}(c) \;\colon\; \mathcal{D}(d_1,d_2) \otimes F_0((c,d_1)) \longrightarrow F_0((c,d_2)) \,.

In the special case of a functor out of the enriched product category of some 𝒱\mathcal{V}-enriched category π’ž\mathcal{C} with its enriched opposite category (def. )

F:π’ž opΓ—π’žβŸΆπ’± F \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{V}

then this takes the form of a β€œpullback action” in the first variable

ρ c 2,c 1(d):π’ž(c 1,c 2)βŠ—F 0((c 2,d))⟢F 0((c 1,d)) \rho_{c_2,c_1}(d) \;\colon\; \mathcal{C}(c_1,c_2) \otimes F_0((c_2,d)) \longrightarrow F_0((c_1,d))

and a β€œpushforward action” in the second variable

ρ d 1,d 2(c):π’ž(d 1,d 2)βŠ—F 0((c,d 1))⟢F 0((c,d 2)). \rho_{d_1,d_2}(c) \;\colon\; \mathcal{C}(d_1,d_2) \otimes F_0((c,d_1)) \longrightarrow F_0((c,d_2)) \,.
Definition

(enriched natural transformation)

For 𝒱\mathcal{V} a cosmos (Def. ), let π’ž\mathcal{C} and π’Ÿ\mathcal{D} be two 𝒱\mathcal{V}-enriched categories (Def. ) and let

π’žβŸΆG⟢Fπ’Ÿ \mathcal{C} \underoverset {\underset{G}{\longrightarrow}} {\overset{F}{\longrightarrow}} {} \mathcal{D}

be two 𝒱\mathcal{V}-enriched functors (Def. ) from π’ž\mathcal{C} to π’Ÿ\mathcal{D}.

Then a 𝒱\mathcal{V}-enriched natural transformation

π’žAA⇓ηAA⟢G⟢Fπ’Ÿ \mathcal{C} \underoverset {\underset{G}{\longrightarrow}} {\overset{F}{\longrightarrow}} {\phantom{AA}\Downarrow{\mathrlap{\eta}}\phantom{AA}} \mathcal{D}

is

  • for each c∈Obj π’žc \in Obj_{\mathcal{C}} a choice of morphism

    Ξ· c:IβŸΆπ’Ÿ(F(c),G(c)) \eta_c \;\colon\; I \longrightarrow \mathcal{D}(F(c),G(c))

    such that for each pair of objects c,dβˆˆπ’žc,d \in \mathcal{C} the two morphisms (in 𝒱\mathcal{V})

(9)Ξ· d∘F(βˆ’):π’ž(c,d)≃rπ’ž(c,d)βŠ—I⟢G c,dβŠ—Ξ· cπ’Ÿ(G(c),G(d))βŠ—π’Ÿ(F(c),G(c))⟢∘ F(c),G(c),G(d)π’Ÿ(F(c),G(d)) \eta_d \circ F(-) \;\colon\; \mathcal{C}(c,d) \overset{r}{\simeq} \mathcal{C}(c,d) \otimes I \overset{ G_{c,d} \otimes \eta_c }{\longrightarrow} \mathcal{D}(G(c),G(d)) \otimes \mathcal{D}( F(c), G(c) ) \overset{\circ_{F(c), G(c), G(d)}}{\longrightarrow} \mathcal{D}(F(c), G(d))

and

(10)G(βˆ’)∘η c:π’ž(c,d)≃ℓIβŠ—π’ž(c,d)⟢η dβŠ—F c,dπ’Ÿ(F(d),G(d))βŠ—π’Ÿ(F(c),F(d))⟢∘ F(c),F(d),G(d)π’Ÿ(F(c),G(d)) G(-) \circ \eta_c \;\colon\; \mathcal{C}(c,d) \overset{\ell}{\simeq} I \otimes \mathcal{C}(c,d) \overset{ \eta_d \otimes F_{c,d} }{\longrightarrow} \mathcal{D}(F(d), G(d)) \otimes \mathcal{D}(F(c), F(d)) \overset{\circ_{F(c),F(d), G(d)}}{\longrightarrow} \mathcal{D}(F(c), G(d))

agree.

Example

(functor category of enriched functors)

For 𝒱\mathcal{V} a cosmos (Def. ) let π’ž\mathcal{C}, π’Ÿ\mathcal{D} be two 𝒱\mathcal{V}-enriched categories (Def. ). Then there is a category (Def. ) of enriched functors (Def. ), to be denoted

[π’ž,π’Ÿ] [\mathcal{C}, \mathcal{D}]

whose objects are the enriched functors π’žβ†’Fπ’Ÿ\mathcal{C} \overset{F}{\to} \mathcal{D} and whose morphisms are the enriched natural transformations between these (Def. ).

In the case that 𝒱=\mathcal{V} = Set, via Def. , with SetSet-enriched categories identified with plain categories via Example , this coincides with the functor category from Example .

Notice that, at this point, [π’ž,π’Ÿ][\mathcal{C}, \mathcal{D}] is a plain category, not itself a 𝒱\mathcal{V}-enriched category, unless 𝒱=\mathcal{V} = Set. But it may be enhanced to one, this is Def. below.

There is now the following evident generalization of the concept of adjoint functors (Def. ) from plain category theory to enriched category theory:

Definition

(enriched adjunction)

For 𝒱\mathcal{V} a cosmos (Def. ), let π’ž\mathcal{C}, π’Ÿ\mathcal{D} be two 𝒱\mathcal{V}-enriched categories (Def. ). Then an adjoint pair of 𝒱\mathcal{V}-enriched functors or enriched adjunction

π’žβŠ₯⟢R⟡Lπ’Ÿ \mathcal{C} \underoverset {\underset{R}{\longrightarrow}} {\overset{L}{\longleftarrow}} {\bot} \mathcal{D}

is a pair of 𝒱\mathcal{V}-enriched functors (Def. ), as shown, such that there is a 𝒱\mathcal{V}-enriched natural isomorphism (Def. ) between enriched hom-functors (Def. ) of the form

(11)π’ž(L(βˆ’),βˆ’)β‰ƒπ’Ÿ(βˆ’,R(βˆ’)). \mathcal{C}(L(-),-) \;\simeq\; \mathcal{D}(-,R(-)) \,.
Definition

(enriched equivalence of categories)

For 𝒱\mathcal{V} a cosmos (Def. ), let π’ž\mathcal{C}, π’Ÿ\mathcal{D} be two 𝒱\mathcal{V}-enriched categories (Def. ). Then an equivalence of enriched categories

π’žAA≃AA⟢R⟡Lπ’Ÿ \array{ \mathcal{C} \underoverset {\underset{R}{\longrightarrow}} {\overset{L}{\longleftarrow}} {\phantom{AA} \simeq \phantom{AA}} \mathcal{D} }

is a pair of 𝒱\mathcal{V}-enriched functors back and forth, as shown (Def. ), together with 𝒱\mathcal{V}-enriched natural isomorphisms (Def. ) between their composition and the identity functors:

id π’Ÿβ‡’β‰ƒR∘LAAAandAAAL∘R⇒≃id π’ž. id_{\mathcal{D}} \overset{\simeq}{\Rightarrow} R \circ L \phantom{AAA} \text{and} \phantom{AAA} L \circ R \overset{\simeq}{\Rightarrow} id_{\mathcal{C}} \,.

Last revised on October 15, 2024 at 08:04:18. See the history of this page for a list of all contributions to it.