monoidal natural transformation



Monoidal categories

Category theory



A monoidal natural transformation is a natural transformation between monoidal functors that respects the monoidal structure.


Let (𝒞, 𝒞,1 𝒞)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (𝒟, 𝒟,1 𝒟)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}}) be two (braided monoidal categories). Let (F i,μ i,ϵ i)(F_i, \mu_i, \epsilon_i) for i{1,2}i \in \{1,2\} be two (braided) lax monoidal functors 𝒞𝒟\mathcal{C}\longrightarrow \mathcal{D}.

Then a homomorphism f:(F 1,μ 1,ϵ 1)(F 2,μ 2,ϵ 2)f\;\colon\; (F_1,\mu_1, \epsilon_1) \longrightarrow (F_2,\mu_2, \epsilon_2) between two (braided) lax monoidal functors is a monoidal natural transformation, in that it is

  • a natural transformation f(x):F 1(x)F 2(x)f(x) \;\colon\; F_1(x) \longrightarrow F_2(x) of the underlying functors

compatible with the product and the unit in that the following diagrams commute for all objects x,y𝒞x,y \in \mathcal{C}:

F 1(x) 𝒟F 1(y) f(x) 𝒟f(y) F 2(x) 𝒟F 2(y) (μ 1) x,y (μ 2) x,y F 1(x 𝒞y) f(x 𝒞y) F 2(x 𝒞y) \array{ F_1(x) \otimes_{\mathcal{D}} F_1(y) &\overset{f(x)\otimes_{\mathcal{D}} f(y)}{\longrightarrow}& F_2(x) \otimes_{\mathcal{D}} F_2(y) \\ {}^{\mathllap{(\mu_1)_{x,y}}}\downarrow && \downarrow^{\mathrlap{(\mu_2)_{x,y}}} \\ F_1(x\otimes_{\mathcal{C}} y) &\underset{f(x \otimes_{\mathcal{C}} y ) }{\longrightarrow}& F_2(x \otimes_{\mathcal{C}} y) }


1 𝒟 ϵ 1 ϵ 2 F 1(1 𝒞) f(1 𝒞) F 2(1 𝒞). \array{ && 1_{\mathcal{D}} \\ & {}^{\mathllap{\epsilon_1}}\swarrow && \searrow^{\mathrlap{\epsilon_2}} \\ F_1(1_{\mathcal{C}}) &&\underset{f(1_{\mathcal{C}})}{\longrightarrow}&& F_2(1_{\mathcal{C}}) } \,.


Exposition includes

Last revised on December 11, 2016 at 18:47:26. See the history of this page for a list of all contributions to it.