nLab monoidal functor

Redirected from "monoidal functors".
Contents

Context

Monoidal categories

monoidal categories

With braiding

With duals for objects

With duals for morphisms

With traces

Closed structure

Special sorts of products

Semisimplicity

Morphisms

Internal monoids

Examples

Theorems

In higher category theory

Contents

Idea

A monoidal functor is a functor between monoidal categories that preserves the monoidal structure: a homomorphism of monoidal categories.

Definition

Definition

Let (π’ž,βŠ— π’ž,1 π’ž)(\mathcal{C},\otimes_{\mathcal{C}}, 1_{\mathcal{C}}) and (π’Ÿ,βŠ— π’Ÿ,1 π’Ÿ)(\mathcal{D},\otimes_{\mathcal{D}}, 1_{\mathcal{D}} ) be two monoidal categories. A lax monoidal functor between them is a functor:

F:π’žβŸΆπ’Ÿ, F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D} \,,

together with coherence maps:

  1. a morphism

    Ο΅:1 π’ŸβŸΆF(1 π’ž) \epsilon \;\colon\; 1_{\mathcal{D}} \longrightarrow F(1_{\mathcal{C}})
  2. a natural transformation

    ΞΌ x,y:F(x)βŠ— π’ŸF(y)⟢F(xβŠ— π’žy) \mu_{x,y} \;\colon\; F(x) \otimes_{\mathcal{D}} F(y) \longrightarrow F(x \otimes_{\mathcal{C}} y)

    for all x,yβˆˆπ’žx,y \in \mathcal{C}

satisfying the following conditions:

  1. (associativity) For all objects x,y,zβˆˆπ’žx,y,z \in \mathcal{C} the following diagram commutes

    (F(x)βŠ— π’ŸF(y))βŠ— π’ŸF(z) βŸΆβ‰ƒa F(x),F(y),F(z) π’Ÿ F(x)βŠ— π’Ÿ(F(y)βŠ— π’ŸF(z)) ΞΌ x,yβŠ—id↓ ↓ idβŠ—ΞΌ y,z F(xβŠ— π’žy)βŠ— π’ŸF(z) F(x)βŠ— π’ŸF(yβŠ— π’žz) ΞΌ xβŠ— π’žy,z↓ ↓ ΞΌ x,yβŠ— π’žz F((xβŠ— π’žy)βŠ— π’žz) ⟢F(a x,y,z π’ž) F(xβŠ— π’ž(yβŠ— π’žz)) \array{ (F(x) \otimes_{\mathcal{D}} F(y)) \otimes_{\mathcal{D}} F(z) &\underoverset{\simeq}{a^{\mathcal{D}}_{F(x),F(y),F(z)}}{\longrightarrow}& F(x) \otimes_{\mathcal{D}}( F(y)\otimes_{\mathcal{D}} F(z) ) \\ {}^{\mathllap{\mu_{x,y} \otimes id}}\downarrow && \downarrow^{\mathrlap{id\otimes \mu_{y,z}}} \\ F(x \otimes_{\mathcal{C}} y) \otimes_{\mathcal{D}} F(z) && F(x) \otimes_{\mathcal{D}} F(y \otimes_{\mathcal{C}} z) \\ {}^{\mathllap{\mu_{x \otimes_{\mathcal{C}} y , z} } }\downarrow && \downarrow^{\mathrlap{\mu_{ x, y \otimes_{\mathcal{C}} z }}} \\ F( ( x \otimes_{\mathcal{C}} y ) \otimes_{\mathcal{C}} z ) &\underset{F(a^{\mathcal{C}}_{x,y,z})}{\longrightarrow}& F( x \otimes_{\mathcal{C}} ( y \otimes_{\mathcal{C}} z ) ) }

    where a π’ža^{\mathcal{C}} and a π’Ÿa^{\mathcal{D}} denote the associators of the monoidal categories;

  2. (unitality) For all xβˆˆπ’žx \in \mathcal{C} the following diagrams commute

    1 π’ŸβŠ— π’ŸF(x) βŸΆΟ΅βŠ—id F(1 π’ž)βŠ— π’ŸF(x) β„“ F(x) π’Ÿβ†“ ↓ ΞΌ 1 π’ž,x F(x) ⟡F(β„“ x π’ž) F(1βŠ— π’žx) \array{ 1_{\mathcal{D}} \otimes_{\mathcal{D}} F(x) &\overset{\epsilon \otimes id}{\longrightarrow}& F(1_{\mathcal{C}}) \otimes_{\mathcal{D}} F(x) \\ {}^{\mathllap{\ell^{\mathcal{D}}_{F(x)}}}\downarrow && \downarrow^{\mathrlap{\mu_{1_{\mathcal{C}}, x }}} \\ F(x) &\overset{F(\ell^{\mathcal{C}}_x )}{\longleftarrow}& F(1 \otimes_{\mathcal{C}} x ) }

    and

    F(x)βŠ— π’Ÿ1 π’Ÿ ⟢idβŠ—Ο΅ F(x)βŠ— π’ŸF(1 π’ž) r F(x) π’Ÿβ†“ ↓ ΞΌ x,1 π’ž F(x) ⟡F(r x π’ž) F(xβŠ— π’ž1) \array{ F(x) \otimes_{\mathcal{D}} 1_{\mathcal{D}} &\overset{id \otimes \epsilon }{\longrightarrow}& F(x) \otimes_{\mathcal{D}} F(1_{\mathcal{C}}) \\ {}^{\mathllap{r^{\mathcal{D}}_{F(x)}}}\downarrow && \downarrow^{\mathrlap{\mu_{x, 1_{\mathcal{C}} }}} \\ F(x) &\overset{F(r^{\mathcal{C}}_x )}{\longleftarrow}& F(x \otimes_{\mathcal{C}} 1 ) }

    where β„“ π’ž\ell^{\mathcal{C}}, β„“ π’Ÿ\ell^{\mathcal{D}}, r π’žr^{\mathcal{C}}, r π’Ÿr^{\mathcal{D}} denote the left and right unitors of the two monoidal categories, respectively.

If Ο΅\epsilon and all ΞΌ x,y\mu_{x,y} are isomorphisms, then FF is called a strong monoidal functor. (Note that β€˜strong’ is also sometimes applied to β€˜monoidal functor’ to indicate possession of a tensorial strength.) If they are even identity morphisms, then FF is called a strict monoidal functor.

Remark

In the literature often the term β€œmonoidal functor” refers by default to what in def. is called a strong monoidal functor. With that convention then what def. calls a lax monoidal functor is called a weak monoidal functor.

Remark

Lax monoidal functors are the lax morphisms for an appropriate 2-monad.

Definition

An oplax monoidal functor (with various alternative names including comonoidal), is a monoidal functor from the opposite categories C opC^{op} to D opD^{op}.

Definition

A monoidal transformation between monoidal functors is a natural transformation that respects the extra structure in an obvious way.

Properties

Proposition

(Lax monoidal functors send monoids to monoids)

If F:(C,βŠ—)β†’(D,βŠ—)F : (C,\otimes) \to (D,\otimes) is a lax monoidal functor and

(A∈C,ΞΌ A:AβŠ—Aβ†’A,i A:Iβ†’A) (A \in C,\;\; \mu_A : A \otimes A \to A, \; i_A : I \to A)

is a monoid object in CC, then the object F(A)F(A) is naturally equipped with the structure of a monoid in DD by setting

i F(A):I D→F(I C)→F(i A)F(A) i_{F(A)} : I_D \stackrel{}{\to} F(I_C) \stackrel{F(i_A)}{\to} F(A)

and

ΞΌ F(A):F(A)βŠ—F(A)β†’βˆ‡ F(A),F(A)F(AβŠ—A)β†’F(ΞΌ A)F(A). \mu_{F(A)} : F(A) \otimes F(A) \stackrel{\nabla_{F(A), F(A)}}{\to} F(A \otimes A) \stackrel{F(\mu_A)}{\to} F(A) \,.

This construction defines a functor

Mon(f):Mon(C)β†’Mon(D) Mon(f) : Mon(C) \to Mon(D)

between the categories of monoids in CC and DD, respectively.

More generally, lax functors send enriched categories to enriched categories, an operation known as change of enriching category. See there for more details.

Similarly:

Proposition

(oplax monoidal functors sends comonoids to comonoids)

For (C,βŠ—)(C,\otimes) a monoidal category write BC\mathbf{B}C for the corresponding delooping 2-category.

Lax monoidal functor f:C→Df : C \to D correspond to lax 2-functor

BF:BC→BD. \mathbf{B}F : \mathbf{B}C \to \mathbf{B}D \,.

If FF is strong monoidal then this is an ordinary 2-functor. If it is strict monoidal, then this is a strict 2-functor.

Relation to multicategories

Remark

Lax monoidal functors between monoidal categories are in correspondence with morphisms between their underlying (representable) multicategories.

Relation to PROs

Remark

Strong monoidal functors between monoidal categories are in correspondence with morphisms between their underlying (representable) colored PROs.

Remark

Strict monoidal functors between monoidal categories are in correspondence with morphisms between their underlying colored PROs that preserve the distinguished isomorphisms ()β†’βˆΌI() \xrightarrow{\sim} I and (A,B)β†’βˆΌ(AβŠ—B)(A, B) \xrightarrow{\sim} (A \otimes B) for all A,BA, B.

Relationships between categories of monoidal categories

Proposition

The 1-category of strict monoidal categories and strict monoidal functors is not equivalent to the 1-category of monoidal categories and strong monoidal functors.

Proof

The former has an initial object, whereas the latter does not.

Proposition

The inclusion from the 1-category of strict monoidal categories and strong monoidal functors into the 1-category of monoidal categories and strong monoidal functors is not an equivalence.

Proof

As mentioned at monoidal category, not every skeletal monoidal category is monoidally equivalent to a strict skeletal monoidal category. Therefore the inclusion is not essentially surjective.

Proposition

The inclusion from the 2-category of strict monoidal categories and strict monoidal functors into the 2-category of monoidal categories and strong monoidal functors is not an equivalence.

Proof

Not every strong monoidal functor between strict monoidal categories is equivalent to a strict one. See for example this MathOverflow question.

Proposition

The inclusion of the the 2-category of strict monoidal categories and strong monoidal functors into the 2-category of monoidal categories and strong monoidal functors is an equivalence.

Proof

By the coherence theorem for monoidal categories, every monoidal category is strong monoidally equivalent to a strict one.

String diagrams

Just like monoidal categories, monoidal functors have a string diagram calculus; see these slides for some examples.

References

Exposition of basics of monoidal categories and categorical algebra:

Last revised on March 27, 2024 at 05:24:40. See the history of this page for a list of all contributions to it.