nLab higher limit approach to homology

Context

Homological algebra

homological algebra

(also nonabelian homological algebra)

Introduction

Context

Basic definitions

Stable homotopy theory notions

Constructions

Lemmas

diagram chasing

Schanuel's lemma

Homology theories

Theorems

Contents

Idea

In homological algebra one usually studies functors of the form π’œβ†’Ab,kβˆ’mod,…\mathcal{A}\to Ab, k-mod, \dots defined via derived functors where π’œ\mathcal{A} is some category of groups, algebras over a ring kk etc., and Ab Ab , k βˆ’ Mod k-Mod are categories of abelian groups and k k -modules, where kk is some ground ring.

For instance, for the category of groups π’œ=\mathcal{A}= Grp, using the left derived functors L q(β„€βŠ— β„€G(βˆ’))L_q(\mathbb{Z}\otimes_{\mathbb{Z}G}(-)) of the functor of coinvariants β„€βŠ— β„€G(βˆ’):β„€Gβˆ’modβ†’Ab\mathbb{Z}\otimes_{\mathbb{Z}G}(-) \colon \mathbb{Z}G-mod\to Ab one usually defines group homology H q(G;A)=L q(β„€βŠ— β„€G(βˆ’))(A)H_q(G;A) =L_q(\mathbb{Z}\otimes_{\mathbb{Z}G}(-))(A) of a group GG with coefficients in a β„€G\mathbb{Z}G-modules AA.

The idea of the higher limit approach of Ivanov & Mikhailov 2015 is to use categories Pres(A)Pres(A) of extensions 0β†’Iβ†’Pβ†’Aβ†’00\to I\to P\to A\to 0 where PP is a projective object in a category of algebraic objects π’œ\mathcal{A} (e.g free presentations of groups) and describe such functors of homological nature H:π’œβ†’Ab,kβˆ’mod,…H:\mathcal{A}\to Ab, k-mod,\dots using derived/higher (co)limits of some simple functors β„±\mathcal{F} from the category H≃lim *,colim *(β„±:Pres(A)β†’Ab,kβˆ’mod,…)H\simeq lim^{*}, colim_{*}(\mathcal{F} \colon Pres(A)\to Ab, k-mod, \dots).

This approach originates in the work [Quillen 1989], where, for instance, he derived the formula:

HC 2n(A)=lim(F/(I n+1+[F,F])), HC_{2n}(A) \;=\; lim\big( F/(I^{n+1}+[F,F]) \big) \,,

where HC 2n(A)HC_{2n}(A) is cyclic homology of AA over a field of characteristic zero kk and F/(I n+1+[F,F])F/(I^{n+1}+[F,F]) takes a free algebra extension 0→I→F→A→00\to I\to F\to A\to 0 and sends it to the abelian group F/(I n+1+[F,F])F/(I^{n+1}+[F,F]).

References

The original articles

Created on November 23, 2024 at 17:51:16. See the history of this page for a list of all contributions to it.