nLab
braided monoidal 2-category

Context

Monoidal categories

2-Category theory

Contents

Idea

A braided monoidal 2-category is a 2-category CC equipped with a tensor product :C×CC\otimes : C \times C \to C 2-functor which satisfies the first in a hierarchy of conditions for being commutative up to equivalence: in the language of k-tuply monoidal n-categories a braided monoidal 2-category is a doubly monoidal 2-category.

As described there, this may be identified with a pointed 4-category with a single object and a single 1-morphism.

Properties

Coherence theorem

Picard 2-groupoid

The Picard 2-groupoid of a braided monoidal 2-category is a braided 3-group.

References

  • Lawrence Breen, Une lettre à P. Deligne au sujet des 22-catégories tressées (1988) (pdf)

  • Mikhail Kapranov and Vladimir Voevodsky, 2-Categories and Zamolodchikov tetrahedra equations, in Proc. Symp. Pure Math. 56 Part 2 (1994), AMS, Providence, pp. 177–260.

  • John Baez and Martin Neuchl, Higher-dimensional algebra I: braided monoidal 2-categories, Adv. Math. 121 (1996), 196-244. (pdf)

  • Sjoerd Crans, Generalized centers of braided and sylleptic monoidal 2-categories, Adv. Math. 136 (1998), 183-223. (pdf)

Revised on March 4, 2016 19:09:07 by John Baez (99.11.156.244)