nLab prime number

Redirected from "primes".
Contents

Contents


A prime number is that which is measured [=divided by smaller number] by a monad [=unit] alone.

[Euclid, Def. 11 of Elements Book VII (~ 400-300 BC), see here]

Definition

A prime number is a natural number greater than 1 that cannot be written as a product of finitely many natural numbers (all) other than itself, hence a natural number greater than 1 that is divisible only by 1 and itself.

Equivalently, a prime number is a natural number AA such that AA is not equal to 1, and for all natural numbers BB and CC, A=BCA = B \cdot C implies that either BB is equal to 1 or CC is equal to 1.

This means that every natural number nn \in \mathbb{N} is, up to re-ordering of factors, uniquely expressed as a product of a tuple of prime numbers:

n=2 n 13 n 25 n 37 n 411 n 5 n \;=\; 2^{n_1} \cdot 3^{n_2} \cdot 5^{n_3} \cdot 7^{n_4} \cdot 11^{ n_5 } \cdots

This is called the prime factorization of nn.

Notice that while the number 11 \in \mathbb{N} is, clearly, only divisible by one and by itself, hence might look like it deserves to be counted as a prime number, too, this would break the uniqueness of this prime factorization. In view of the general phenomenon in classifications in mathematics of some objects being too simple to be simple one could say that 1 is “too prime to be prime”.

However, historically, some authors did count 1 as a prime number, see e.g. Roegel 11.

Relation to ideals and arithmetic geometry

A number is prime if and only if it generates a maximal ideal in the rig \mathbb{N} of natural numbers.

Prime numbers do not quite match the prime elements of \mathbb{N}, since 00 generates a prime ideal but not a maximal ideal; instead they match the irreducible elements (Wikipedia).

From the Isbell-dual point of view, where a commutative ring such as the integers \mathbb{Z} is regarded as the ring of functions on some variety, namely on Spec(Z), the fact that prime numbers pp correspond to maximal ideals means that they correspond to the closed points in this variety (see this Example), one also writes

(p)Spec(). (p) \in Spec(\mathbb{Z}) \,.

This dual perspective on number theory as being the geometry (algebraic geometry) over Spec(Z) is called arithmetic geometry.

function field analogy

number fields (“function fields of curves over F1”)function fields of curves over finite fields 𝔽 q\mathbb{F}_q (arithmetic curves)Riemann surfaces/complex curves
affine and projective line
\mathbb{Z} (integers)𝔽 q[z]\mathbb{F}_q[z] (polynomials, polynomial algebra on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})𝒪 \mathcal{O}_{\mathbb{C}} (holomorphic functions on complex plane)
\mathbb{Q} (rational numbers)𝔽 q(z)\mathbb{F}_q(z) (rational fractions/rational function on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})meromorphic functions on complex plane
pp (prime number/non-archimedean place)x𝔽 px \in \mathbb{F}_p, where zx𝔽 q[z]z - x \in \mathbb{F}_q[z] is the irreducible monic polynomial of degree onexx \in \mathbb{C}, where zx𝒪 z - x \in \mathcal{O}_{\mathbb{C}} is the function which subtracts the complex number xx from the variable zz
\infty (place at infinity)\infty
Spec()Spec(\mathbb{Z}) (Spec(Z))𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q} (affine line)complex plane
Spec()place Spec(\mathbb{Z}) \cup place_{\infty} 𝔽 q\mathbb{P}_{\mathbb{F}_q} (projective line)Riemann sphere
p() p()p\partial_p \coloneqq \frac{(-)^p - (-)}{p} (Fermat quotient)z\frac{\partial}{\partial z} (coordinate derivation)
genus of the rational numbers = 0genus of the Riemann sphere = 0
formal neighbourhoods
/(p n)\mathbb{Z}/(p^n \mathbb{Z}) (prime power local ring)𝔽 q[z]/((zx) n𝔽 q[z])\mathbb{F}_q [z]/((z-x)^n \mathbb{F}_q [z]) (nn-th order univariate local Artinian 𝔽 q \mathbb{F}_q -algebra)[z]/((zx) n[z])\mathbb{C}[z]/((z-x)^n \mathbb{C}[z]) (nn-th order univariate Weil \mathbb{C} -algebra)
p\mathbb{Z}_p (p-adic integers)𝔽 q[[zx]]\mathbb{F}_q[ [ z -x ] ] (power series around xx)[[zx]]\mathbb{C}[ [z-x] ] (holomorphic functions on formal disk around xx)
Spf( p)×Spec()XSpf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X (“pp-arithmetic jet space” of XX at pp)formal disks in XX
p\mathbb{Q}_p (p-adic numbers)𝔽 q((zx))\mathbb{F}_q((z-x)) (Laurent series around xx)((zx))\mathbb{C}((z-x)) (holomorphic functions on punctured formal disk around xx)
𝔸 = pplace p\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p (ring of adeles)𝔸 𝔽 q((t))\mathbb{A}_{\mathbb{F}_q((t))} ( adeles of function field ) x((zx))\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x)) (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks)
𝕀 =GL 1(𝔸 )\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}}) (group of ideles)𝕀 𝔽 q((t))\mathbb{I}_{\mathbb{F}_q((t))} ( ideles of function field ) xGL 1(((zx)))\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))
theta functions
Jacobi theta function
zeta functions
Riemann zeta functionGoss zeta function
branched covering curves
KK a number field (K\mathbb{Q} \hookrightarrow K a possibly ramified finite dimensional field extension)KK a function field of an algebraic curve Σ\Sigma over 𝔽 p\mathbb{F}_pK ΣK_\Sigma (sheaf of rational functions on complex curve Σ\Sigma)
𝒪 K\mathcal{O}_K (ring of integers)𝒪 Σ\mathcal{O}_{\Sigma} (structure sheaf)
Spec an(𝒪 K)Spec()Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z}) (spectrum with archimedean places)Σ\Sigma (arithmetic curve)ΣP 1\Sigma \to \mathbb{C}P^1 (complex curve being branched cover of Riemann sphere)
() pΦ()p\frac{(-)^p - \Phi(-)}{p} (lift of Frobenius morphism/Lambda-ring structure)z\frac{\partial}{\partial z}
genus of a number fieldgenus of an algebraic curvegenus of a surface
formal neighbourhoods
vv prime ideal in ring of integers 𝒪 K\mathcal{O}_KxΣx \in \SigmaxΣx \in \Sigma
K vK_v (formal completion at vv)((z x))\mathbb{C}((z_x)) (function algebra on punctured formal disk around xx)
𝒪 K v\mathcal{O}_{K_v} (ring of integers of formal completion)[[z x]]\mathbb{C}[ [ z_x ] ] (function algebra on formal disk around xx)
𝔸 K\mathbb{A}_K (ring of adeles) xΣ ((z x))\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x)) (restricted product of function rings on all punctured formal disks around all points in Σ\Sigma)
𝒪\mathcal{O} xΣ[[z x]]\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ] (function ring on all formal disks around all points in Σ\Sigma)
𝕀 K=GL 1(𝔸 K)\mathbb{I}_K = GL_1(\mathbb{A}_K) (group of ideles) xΣ GL 1(((z x)))\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))
Galois theory
Galois groupπ 1(Σ)\pi_1(\Sigma) fundamental group
Galois representationflat connection (“local system”) on Σ\Sigma
class field theory
class field theorygeometric class field theory
Hilbert reciprocity lawArtin reciprocity lawWeil reciprocity law
GL 1(K)\GL 1(𝔸 K)GL_1(K)\backslash GL_1(\mathbb{A}_K) (idele class group)
GL 1(K)\GL 1(𝔸 K)/GL 1(𝒪)GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})Bun GL 1(Σ)Bun_{GL_1}(\Sigma) (moduli stack of line bundles, by Weil uniformization theorem)
non-abelian class field theory and automorphy
number field Langlands correspondencefunction field Langlands correspondencegeometric Langlands correspondence
GL n(K)\GL n(𝔸 K)//GL n(𝒪)GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O}) (constant sheaves on this stack form unramified automorphic representations)Bun GL n()(Σ)Bun_{GL_n(\mathbb{C})}(\Sigma) (moduli stack of bundles on the curve Σ\Sigma, by Weil uniformization theorem)
Tamagawa-Weil for number fieldsTamagawa-Weil for function fields
theta functions
Hecke theta functionfunctional determinant line bundle of Dirac operator/chiral Laplace operator on Σ\Sigma
zeta functions
Dedekind zeta functionWeil zeta functionzeta function of a Riemann surface/of the Laplace operator on Σ\Sigma
higher dimensional spaces
zeta functionsHasse-Weil zeta function

Properties

Riemann hypothesis

see at Riemann hypothesis

Goldbach conjecture

see at Goldbach conjecture

Asymptotic distribution

see at prime number theorem

Specific classes of prime numbers

 Finite sets with prime number cardinality

The following statements are equivalent for a finite set AA:

In dependent type theory, this is expressed for A:FinA:\mathrm{Fin} as

hasPrimeCard(A)¬isContr(A)× B:Fin C:Fin[AB×C](isContr(B)isContr(C))\mathrm{hasPrimeCard}(A) \coloneqq \neg \mathrm{isContr}(A) \times \prod_{B:\mathrm{Fin}} \prod_{C:\mathrm{Fin}} [A \simeq B \times C] \to (\mathrm{isContr}(B) \vee \mathrm{isContr}(C))

References

For historical discussion see

  • Denis Roegel, A reconstruction of Lehmer’s table of primes (1914), 2011 (pdf)

See also

Last revised on June 30, 2024 at 06:35:34. See the history of this page for a list of all contributions to it.