nLab moduli space of bundles





Complex geometry

Analytic geometry

Arithmetic geometry



Moduli spaces and moduli stacks of vector bundles and of GG-principal bundles for a complex algebraic group GG have been widely studied in geometry, with many deep results, especially for the case that the base space is a complex curve or algebraic curve. In a classical work of Grothendieck presented in FGA (see FGA explained), he studied moduli schemes of coherent sheaves with certain parameters fixed, so called Quot schemes. Later, geometric invariant theory defined other class of moduli spaces of bundles. Especially important is the case of the moduli space of stable bundles on a Riemann surface, which is deeply relevant for mathematical physics, as the Narasimhan–Seshadri theorem relates it to the moduli space of flat connections (and to self-dual solutions of Yang-Mills equations; study of spaces of conformal blocks; representation theory of affine Lie algebras and loop groups; integrable systems, esp. Hitchin systems, etc.).


Bundles over curves and the Langlands correspondence

For GG some complex Lie group and Σ\Sigma some complex curve, then the moduli stack of GG-principal bundles on Σ\Sigma (which are equivalently holomorphic vector bundles when G= nGL(n,)G = \coprod_{n} GL(n,\mathbb{C})) has a standard description as a double coset space quotient stack of the collection of formal power series around finitely many points in Σ\Sigma – the Weil uniformization theorem. We frist disucss an easy toplogical version of this statement in

and then we discuss the complex-analytic version

Notice here that the sub-moduli space of stable GLGL-principal bundles is related via the Narasimhan-Seshadri theorem to that of flat GLGL-principal connections which is the phase space of GG-Chern-Simons theory and via the holographic relation of that to the WZW model an ingredient of the modular functor and of equivariant elliptic cohomology etc. This relation serves to explain to some extent why this object is of such interest.

Now the double quotient description is noteworthy because in this incarnation the moduli stack has, via the function field analogy, an immediate analog in algebraic geometry and in fact in arithmetic geometry over any number field. This we discuss below in the section

This parallel or analogy between the moduli stack of GG-bundles over curves in analytic geometry and in arithmetic geometry is the underlying reason for the parallel between the number theoretic Langlands correspondence and the geometric Langlands correspondence (review includes Frenkel 05, section 3.2). It is also at the heart of the Weil conjecture on Tamagawa numbers.

In summary/preview, the analogy is this:

function field analogy

number fields (“function fields of curves over F1”)function fields of curves over finite fields 𝔽 q\mathbb{F}_q (arithmetic curves)Riemann surfaces/complex curves
affine and projective line
\mathbb{Z} (integers)𝔽 q[z]\mathbb{F}_q[z] (polynomials, polynomial algebra on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})𝒪 \mathcal{O}_{\mathbb{C}} (holomorphic functions on complex plane)
\mathbb{Q} (rational numbers)𝔽 q(z)\mathbb{F}_q(z) (rational fractions/rational function on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})meromorphic functions on complex plane
pp (prime number/non-archimedean place)x𝔽 px \in \mathbb{F}_p, where zx𝔽 q[z]z - x \in \mathbb{F}_q[z] is the irreducible monic polynomial of degree onexx \in \mathbb{C}, where zx𝒪 z - x \in \mathcal{O}_{\mathbb{C}} is the function which subtracts the complex number xx from the variable zz
\infty (place at infinity)\infty
Spec()Spec(\mathbb{Z}) (Spec(Z))𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q} (affine line)complex plane
Spec()place Spec(\mathbb{Z}) \cup place_{\infty} 𝔽 q\mathbb{P}_{\mathbb{F}_q} (projective line)Riemann sphere
p() p()p\partial_p \coloneqq \frac{(-)^p - (-)}{p} (Fermat quotient)z\frac{\partial}{\partial z} (coordinate derivation)
genus of the rational numbers = 0genus of the Riemann sphere = 0
formal neighbourhoods
/(p n)\mathbb{Z}/(p^n \mathbb{Z}) (prime power local ring)𝔽 q[z]/((zx) n𝔽 q[z])\mathbb{F}_q [z]/((z-x)^n \mathbb{F}_q [z]) (nn-th order univariate local Artinian 𝔽 q \mathbb{F}_q -algebra)[z]/((zx) n[z])\mathbb{C}[z]/((z-x)^n \mathbb{C}[z]) (nn-th order univariate Weil \mathbb{C} -algebra)
p\mathbb{Z}_p (p-adic integers)𝔽 q[[zx]]\mathbb{F}_q[ [ z -x ] ] (power series around xx)[[zx]]\mathbb{C}[ [z-x] ] (holomorphic functions on formal disk around xx)
Spf( p)×Spec()XSpf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X (“pp-arithmetic jet space” of XX at pp)formal disks in XX
p\mathbb{Q}_p (p-adic numbers)𝔽 q((zx))\mathbb{F}_q((z-x)) (Laurent series around xx)((zx))\mathbb{C}((z-x)) (holomorphic functions on punctured formal disk around xx)
𝔸 = pplace p\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p (ring of adeles)𝔸 𝔽 q((t))\mathbb{A}_{\mathbb{F}_q((t))} ( adeles of function field ) x((zx))\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x)) (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks)
𝕀 =GL 1(𝔸 )\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}}) (group of ideles)𝕀 𝔽 q((t))\mathbb{I}_{\mathbb{F}_q((t))} ( ideles of function field ) xGL 1(((zx)))\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))
theta functions
Jacobi theta function
zeta functions
Riemann zeta functionGoss zeta function
branched covering curves
KK a number field (K\mathbb{Q} \hookrightarrow K a possibly ramified finite dimensional field extension)KK a function field of an algebraic curve Σ\Sigma over 𝔽 p\mathbb{F}_pK ΣK_\Sigma (sheaf of rational functions on complex curve Σ\Sigma)
𝒪 K\mathcal{O}_K (ring of integers)𝒪 Σ\mathcal{O}_{\Sigma} (structure sheaf)
Spec an(𝒪 K)Spec()Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z}) (spectrum with archimedean places)Σ\Sigma (arithmetic curve)ΣP 1\Sigma \to \mathbb{C}P^1 (complex curve being branched cover of Riemann sphere)
() pΦ()p\frac{(-)^p - \Phi(-)}{p} (lift of Frobenius morphism/Lambda-ring structure)z\frac{\partial}{\partial z}
genus of a number fieldgenus of an algebraic curvegenus of a surface
formal neighbourhoods
vv prime ideal in ring of integers 𝒪 K\mathcal{O}_KxΣx \in \SigmaxΣx \in \Sigma
K vK_v (formal completion at vv)((z x))\mathbb{C}((z_x)) (function algebra on punctured formal disk around xx)
𝒪 K v\mathcal{O}_{K_v} (ring of integers of formal completion)[[z x]]\mathbb{C}[ [ z_x ] ] (function algebra on formal disk around xx)
𝔸 K\mathbb{A}_K (ring of adeles) xΣ ((z x))\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x)) (restricted product of function rings on all punctured formal disks around all points in Σ\Sigma)
𝒪\mathcal{O} xΣ[[z x]]\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ] (function ring on all formal disks around all points in Σ\Sigma)
𝕀 K=GL 1(𝔸 K)\mathbb{I}_K = GL_1(\mathbb{A}_K) (group of ideles) xΣ GL 1(((z x)))\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))
Galois theory
Galois groupπ 1(Σ)\pi_1(\Sigma) fundamental group
Galois representationflat connection (“local system”) on Σ\Sigma
class field theory
class field theorygeometric class field theory
Hilbert reciprocity lawArtin reciprocity lawWeil reciprocity law
GL 1(K)\GL 1(𝔸 K)GL_1(K)\backslash GL_1(\mathbb{A}_K) (idele class group)
GL 1(K)\GL 1(𝔸 K)/GL 1(𝒪)GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})Bun GL 1(Σ)Bun_{GL_1}(\Sigma) (moduli stack of line bundles, by Weil uniformization theorem)
non-abelian class field theory and automorphy
number field Langlands correspondencefunction field Langlands correspondencegeometric Langlands correspondence
GL n(K)\GL n(𝔸 K)//GL n(𝒪)GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O}) (constant sheaves on this stack form unramified automorphic representations)Bun GL n()(Σ)Bun_{GL_n(\mathbb{C})}(\Sigma) (moduli stack of bundles on the curve Σ\Sigma, by Weil uniformization theorem)
Tamagawa-Weil for number fieldsTamagawa-Weil for function fields
theta functions
Hecke theta functionfunctional determinant line bundle of Dirac operator/chiral Laplace operator on Σ\Sigma
zeta functions
Dedekind zeta functionWeil zeta functionzeta function of a Riemann surface/of the Laplace operator on Σ\Sigma
higher dimensional spaces
zeta functionsHasse-Weil zeta function

Over smooth real surfaces



There is a bijection between

[X *,G]\[D *,G]/[D,G]GBund(X) [X^\ast,G] \backslash [D^\ast,G] / [D,G] \simeq G Bund(X)_{\sim}

between the double coset space of topological groups as shown on the left and the set of equivalence classes of topological GG-principal bundles on XX.

e.g. (Sorger 99, prop. 4.1.1)


The key observation is that in X *X^\ast every GG-bundle trivializes. Therefore

X *DX X^\ast \coprod D \longrightarrow X

is a cover of XX which is good enough in that degree-1 nonabelian Cech cohomology on this cover with coefficients in GG classifies GG-principal bundles.

For this cover the group [D *,G][D^\ast, G] is precisely that of Cech cocycles, and [DX *,G][D \coprod X^\ast, G] that of Cech coboundaries.

Over complex curves


e.g. Frenkel 05, section 3.2


Over algebraic curves



(Weil uniformization theorem)

There is an Equivalence of stacks

[X *]\[D *,G]/[D,G]Bun G(X) [X^\ast] \backslash [D^\ast,G]/[D,G] \simeq Bun_G(X)

between the double quotient stack as shown on the left and the stack of algebraic GG-principal bundles on XX.

e.g. (Sorger 99, theorem 5.1.1)

moduli spaces



Over complex curves

  • Mudumbai Narasimhan, C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. 82, No. 3 (Nov., 1965), pp. 540-567, jstor, doi

  • A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math Ann 213, 129-152 (1975).

  • Michael Atiyah, Raoul Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London 308 (1983), 523–615.

  • A. Beauville, Y. Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), 385–419.

Over algebraic curves

  • Gerd Faltings, Vector bundles on curves, 1995 Bonn lectures, write up by M. Stoll, pdf

  • Gerd Faltings], Moduli-stacks for bundles on semistable curves, Math. Ann. 304, 3 (1996) 489-515; Stable GG-bundles and projective connections, J. Algebraic Geom. 2, 3 (1993) 507-568, doi, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. 5 (2003), 41-68.

  • Gerd Faltings, Line-bundles on the moduli-space of G-torsors, lecture at MSRI 2002, video and pdf

  • Günter Harder, Mudumbai Narasimhan, On the cohomology groups of moduli spaces of vector bundle on curves, Math Ann. 212, 215-248 (1975).

  • Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) pp. 91–114

  • V. B. Mehta, C. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), 205–239.

  • P. E. Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972), 337–345.

  • S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973), 69–84.

  • Carlos Simpson, Higgs bundles and local systems, Publ. Mathématiques de l’IHÉS 75 (1992), p. 5-95, numdam

  • Constantin Teleman, C. T. Woodward, The index formula for the moduli

    of G-bundles on a curve_, Ann. Math. 170, 2, 495–527 (2009) pdf

  • Christoph Sorger, Lectures on moduli of principal GG-bundles over algebraic curves, 1999 (pdf)

  • Jochen Heinloth, Uniformization of 𝒢\mathcal{G}-bundles (pdf)

  • Jonathan Wang?, The moduli stack of GG-bundles, arXiv:1104.4828.

  • References for moduli spaces of bundles over singular curves are discussed at MathOverflow here

Over arithmetic curves

  • Norbert Hoffmann, On vector bundles over algebraic and arithmetic curves, 2002 (pdf)

Review in the context of geometric Langlands duality is in

  • Edward Frenkel, Lectures on the Langlands Program and Conformal Field Theory, in Frontiers in number theory, physics, and geometry II, Springer Berlin Heidelberg, 2007. 387-533. (arXiv:hep-th/0512172)

Last revised on July 18, 2022 at 02:25:49. See the history of this page for a list of all contributions to it.